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This paper considers the integrated bi-objective problem of projects selection and scheduling to optimize
both total expected benefit and resource usage variation. The benefit is time-dependent. Although this
integrated problem has become a very active field of research, the available model and algorithms suffer
from serious shortcomings. This paper analyzes the available methods and develops a novel mathemati-
cal model, in form of a mixed integer linear program, for the problem. Then, it proposes an ant colony
optimization algorithm employing four features of ant generation, colonial, Pareto front updating, and
pheromone updating mechanisms. To evaluate the proposed algorithm, it is compared with two available
genetic algorithm and scatter search. Using comprehensive numerical experiments and statistical tools, it
is shown that the proposed ant colony optimization outperforms the two available algorithms.
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1. Introduction

Regarding real world competitive markets, project selection is
one of the most important strategic decisions that each enterprise
may deal with (Ghorbani & Rabbani, 2009; Lin & Hsieh, 2004;
Rabbani, Aramoon Bajestani, & Baharian Khoshkhou, 2010; Yu,
Wang, Wen, & Lai, 2012). The problem is to select an optimum
portfolio of projects among several available projects subject to
enterprise’s intrinsic constraints of budget, available resources,
and other extrinsic and technical limitations of the real world.
The project portfolio selection (PPS) problem may consider var-
ious objectives but in financial trades, gaining maximum benefit
is always considered as a crucial objective. Hence, many studies
have considered this objective function (Bhattacharyya, Kumar,
& Kar, 2011; Chen & Askin, 2009; Ghorbani & Rabbani, 2009;
Liu & Wang, 2011; Tseng & Liu, 2011). The economic nature of
many projects causes that more benefit can be achieved if a pro-
ject is completed earlier, (Chen & Askin, 2009). Thus, after select-
ing a portfolio of projects, each enterprise requires to schedule
them to acquire maximum benefit. The joint problem of project
selection and scheduling have recently received significant atten-
tions (Carazo et al., 2010; Chen & Askin, 2009; Ghorbani &
Rabbani, 2009; Liu & Wang, 2011). The literature focuses more
on the project portfolio selection problem than the joint problem
under consideration. For example, see Cruz, Fernandez, Gomez,
Rivera, and Perez (2014). In this paper, the authors consider only
the project selection part. They formulate the problem using
knapsack-based variables and propose an ant colony optimization
with the matrix representation.

The problem can be described as follows. Let us suppose a set of
projects are available. There are also a set of resources to carry out
the selected projects. The model has a planning horizon consisting
of multiple time periods, and each project has certain duration.
Resource usage of each project and the available amount of
resources in each time period are predetermined. Each selected
project in each time period releases certain benefit. The objective
is to select a subset of projects to both maximize total expected
benefit of selected projects and to minimize the summation of
the absolute variation of the allotted resource between each pair
of two successive time periods. These two objectives are in conflict
(Ghorbani & Rabbani, 2009). On one hand, the first objective func-
tion tends to select as many projects as available to maximize the
earned benefit. On the other hand, selecting more projects needs
more resources in each time period; thus, it likely worsens the sec-
ond objective function (Ghorbani & Rabbani, 2009). Additionally,
the following assumptions are characterized. The benefit gained
from each project is time dependent. The earlier a project is com-
pleted, the more its benefit becomes. All the parameters are deter-
ministic. Projects are interdependent. This is, some projects might
be mutually exclusive. Projects are also integrated. That is, a pro-
ject, if selected, must continue and finish without any interruption.
There is a limited time horizon, i.e., all selected projects must be
completed within a limited time horizon, called makespan.
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One objective for this problem is maximization of total benefit.
In real world, resources such as specialized labors are highly
cost-intensive. Hence, managers face multidimensional decisions
considering both benefit maximization and recourse usage
minimization. Commonly, papers consider minimizing total
required resources or required resources in each time period. Yet,
this objective may increase the level of risk. Resource planning is
done mostly at beginning of the project implementation, but pro-
jects may not be performed as planned. Therefore, if the level of
resources is minimized, it may cause many disruptions in project
implementation. In such circumstances, recent researches
(Ghorbani & Rabbani, 2009) tend to minimize the maximum level
of required resources as the second objective.

It is proved that the resource constrained project scheduling
problems (RCPSP) are NP-hard (Demeulemeester & Herroelen,
2002). In this case, metaheuristics are utilized since exact methods
cannot achieve acceptable solutions within reasonable time for
large sized problems. Note that often real world problems are
not small sizes. Among different alternatives, ant colony optimiza-
tion (ACO) algorithm show high performance in many optimiza-
tion problems (Doerner, Gutjahr, Hartl, Strauss, & Stummer,
2001; Doerner, Gutjahr, Hartl, Strauss, & Stummer, 2006; Liang,
Chen, Kao, & Chyu, 2004). Moreover, ACO seems more effective
than other evolutionary metaheuristics like genetic algorithms
for intensive constrained problems. In evolutionary metaheuristics,
solutions are built and then checked feasibility. Afterwards, the
infeasible solutions are either discarded or converted. This proce-
dure is time-consuming. Yet, in ACO, solutions are built step by
step and at each stage, generation of infeasible solutions is avoided.
Consequently, this paper proposes a new multi-objective
metaheuristic method based on ACO. To enhance ACO, it is also
hybridized with a mimetic search algorithm.

The rest of this paper is organized as follows. Section 2 pro-
poses a new mathematical model for the problem of project
selection and scheduling under resources restrictions. The
proposed multi-objective evolutionary algorithm is developed in
Section 3. Section 4 presents carries out experiments to
evaluate the proposed model and algorithm. Finally, the paper
is concluded in Section 5.
2. Proposed mathematical formulation

In the joint problem of project selection and scheduling, a small
subset of projects is chosen from a much larger set of projects
based on a set of objective criteria and a given set of limitations.
The first phase of studying such an optimization problem is devel-
oping mathematical formulation. The problem under consideration
is already modeled by Ghorbani and Rabbani (2009). Unfortunate-
ly, this model includes several shortcomings. First, the mixed inte-
ger model is non-linear; thus, there is no guarantee of optimality
while solving this model. Next, it does not support more than
one resource. Last but not the least; the model is ineffective since
it suffers from high size complexity. That is, it includes an exten-
sive number of decision variables and constraints. The same
decisions can be represented by much fewer variables and con-
straints in a more intelligent model. This paper develops a new
mixed integer linear programming (MILP) model for the problem
to resolve all these shortcomings.
2.1. Mathematical model

In the proposed model, the following indexes and parameters
are used.
n: total number of available competitive projects
m: the number of different types of resources
T: number if time periods (makespan)
i;h: indexes for projects; i;h 2 f1;2; . . . ;ng
k: resources index; k 2 f1;2; . . . ;mg
t; j: time period indexes; t; j 2 f1;2; . . . ; Tg
di = the duration of project i
Hi = set of projects that are interdependent with project i
rk;t = available amount of resource k, in time period t
ai;k = required amount of resource k should be allocated to

project i in each time period
bi;t = the expected benefit of project i if it start in t-th time

period
Decision variables
Xi;t ¼ 1 if project i starts in time period t, 0 otherwise;

1 6 t 6 T � di þ 1
Wt;k = variation of k-th allotted resource between each

successive time period
The model formulates the problem as follow.
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Eqs. (1) and (2) are the first and second objective functions (i.e.,
total expected benefit and resource usage variation between each
two successive time periods.) Constraint set (3) determines the time
the selected project is started. Constraint set (4) ensures that
resource limitations are not violated. Constraints sets (5) and (6)
linearly specify the resource usage variation between the two suc-
cessive time periods. Constraint set (7) ensures that the projects’
interdependency is held. Constraint sets (8) and (9) define the deci-
sion variables.

2.2. Illustrative example

In the following, we provide a small numerical example and one
of its feasible solutions to demonstrate different aspects of the
problem and the model. Let us assume five projects are available.
Table 1 shows durations and resource usage of a single resource.
The expected benefits and interdependencies are shown in Tables
2 and 3, respectively. Makespan is equal to 10 time units and the
maximum available resource for all time periods is 6 units.



Table 1
Duration of projects.

Factor Projects

1 2 3 4 5

Duration 4 5 3 2 4
Required resource 3 5 1 2 4

Table 3
Project interdependencies.

Projects

Projects 1 2 3 4 5

1 – 0 0 1 1
2 0 – 0 1 0
3 0 0 – 0 1
4 1 1 0 – 0
5 1 0 1 0 –
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As shown in Fig. 1, one solution for this problem, can be
X1;1 ¼ 1;X2;5 ¼ 1 and X3;1 ¼ 1. This means projects 1, 2 and 3 are
selected and started at 1, 5, and 1 respectively.

With this solution total expected benefit equals 64
(25 + 19 + 20 = 64) and based on Table 5 second objective is equal
8 (0 + 1+0 + 0+2 + 0 + 0 + 0+5 + 0 = 8). In Tables 4 and 5 we check
the validity of constraint (4) and constraints (5) and (6)
simultaneously.

Validity of Constraints (3) and (7) are straightforward. If one of
the projects which has interdependency with other one is selected,PT�diþ1

t¼1 ðxi;tÞ becomes 1 and the other part
PT�dhþ1

t¼1 xh;t

� �
must be 0.
Fig. 1. Project Gantt chart and resource usage.

Table 4
Constraint (4) validity check.

Factor Time period

1 2 3 4 5 6 7 8 9 10

Resource usage 4 4 3 3 5 5 5 5 5 0
Available resource 6 6 6 6 6 6 6 6 6 6
Constraint (4) validity status

p pa p p p p p p p p

a

3. Proposed Pareto ant colony optimization algorithm

In this section, we develop an algorithm, based on ant colony
optimization (ACO), to solve the problem. ACO is a metaheuristic,
inspired from the ant’s behavior in nature. It is firstly introduced
by Dorigo, Maniezzo, and Colorni (1991), Dorigo (1992) and
Dorigo, Maniezzo, and Colorni (1996). It combines stochastic
search with a learning mechanism. One significant advantage of
ACO, over other evolutionary metaheuristics such as genetic algo-
rithms, is to construct solutions step-by-step. Thus, ACO likely per-
forms well in solving problems with intensive feasibility
constraints.
3� ð1Þ þ 5� ð0Þ þ 1� ð1Þ þ 2� ð0Þ þ 4� ð0Þ 6 6.

Table 5
Constraints (5) and (6) validity check.

Time period

Factor 1 2 3 4 5 6 7 8 9 10

Constraint (5): Wt;1 P 0 1 0 �2 0 0 0 0 5 –
Constraint (6): Wt;1 P – 0 �1 0 2 0 0 0 0 �5
Constraint (9): Wt;1 P 0 0 0 0 0 0 0 0 0 0
Wt;1 P 0 1 0 0 2 0 0 0 5 0
Overall validity status

p p p p p p p p p p
3.1. Classical ant colony optimization

In classical ACO, search is done by a population of solutions rep-
resented by a construction graph C. A complete solution is generat-
ed step-by-step by some sequential walks. In case of infeasibility in
any of walks, the construction process stops. To specify the next
walk, ACO uses pheromone value s and visibility value g. The pher-
omone value is a memory that stores the desirability of each walk
step through pervious runs, and visibility is a per-defined value
according to the nature of the problem and its circumstances.
The probability of choosing each walk step between each pair of
nods is shown as pkl where k and l are two feasible successor nodes.
This probability can be calculated using different formulas, but the
most frequently used formula is Eq. (10).

Pk;l ¼ sa
k;l � gb

k;l ð10Þ

where a and b are parameters determining the influence of the
pheromone value and visibility value, respectively. At the end of
each iteration, the pheromone on each path is updated.
Table 2
The expected benefit in each time period.

Projects Time

1 2 3 4 5 6 7 8 9 10

1 25 23 20 17 16 14 10 0 0 0
2 30 28 25 21 19 17 0 0 0 0
3 20 19 17 15 14 12 10 9 0 0
4 15 13 12 11 11 10 7 5 3 0
5 25 24 21 19 17 14 8 0 0 0
The pheromone updating procedure can be applied either during
(local pheromone update rule) or after (global pheromone update
rule) solution constructing phase. Local and global pheromone
updating procedures enhance exploration and intensification capa-
bilities (Bonabeau, Dorigo, & Theraulaz, 1999). Eqs. (11) and (12)
show the first and second pheromone updating rules, respectively.

sk;l ¼ 1� qð Þsk;l þ qs0 ð11Þ
sk;l ¼ 1� qð Þsk;l þ Dsk;l ð12Þ

where q and Dsk;l are the pheromone evaporation coefficient and
the amount of pheromone deposited by selected ants, respectively.

3.2. Proposed Pareto ant colony optimization

The framework of the proposed metaheuristic relies on a Pareto
Ant Colony Optimization (P-ACO). The P-ACO algorithm generalizes
the ant colony optimization (ACO) metaheuristic for single-
objective problems to the case of multi objective functions,
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determining approximations to the set of Pareto-efficient solutions.
P-ACO is introduced by Doerner et al. (2001). While metaheuristics
in general provide an attractive compromise between the computa-
tional effort necessary and the quality of an approximated solution
space, Pareto ant colony optimization (P-ACO) has been shown to
perform particularly well for this class of problems (Doerner et al.,
2006).

There are several strategies to solve multi-objective problems
by an ant colony optimization. One strategy is to have K colonies
(K is the number of objectives) one for each objective. Then, colo-
nies are merged to build an approximation Pareto set (Aljanaby,
Mahamud, & Norwawi, 2010; Delévacq, Delisle, Gravel, &
Krajecki, 2013; Ellabib, Calamai, & Basir, 2007). This strategy suf-
fers from two major disadvantages. First, due to being time-con-
suming, it is slow. Second, determining and tuning effective
parameters and specifying merging time and exchange strategies
are also difficult. Another strategy is to consider all objectives in
one colony (see Doerner, Gutjahr, Hartl, Strauss, & Stummer,
2004). In this case, procedure of weighting the objective functions,
selecting pheromone updating strategy and calculating the prob-
ability of choosing each walk step are not straightforward (Bakk,
2010) and find proper parameters of algorithm is very hard and
challenging; hence, it is hard to code. The other strategy is to
search by the most important objective onlyor treat the multiple
objectives in a lexicographic order (Gravel, Price, & Gagne, 2002).
Although this strategy is much faster than two other strategies, it
does not provide divergence solutions.

All these strategies have serious disadvantages. The two first
strategies are slow and hard to implement and the other one does
not generate diverse solutions. To obviate these disadvantages, we
use a mimetic based local search to gain more effective and effi-
cient solutions. The proposed mimetic Pareto ant colony optimiza-
tion (MPACO) can be described as follows. Initially, the pheromone
trails are set to one. Then main loop of the algorithm starts. At each
iteration, ants are generated from the current pheromone trails
using ant generation mechanism. Each ant is a feasible solution
encoded by a representation mechanism. Then, each original is
proliferated by a procedure called colonial mechanism. All original
and proliferated ants are put in a pool. Then, the approximation
Pareto front is updated using a fast non-dominated sorting
mechanism. Finally, the pheromone trails are updated using a
pheromone updating mechanism. The pseudo code of the proposed
MPACO algorithm is outlined in Fig. 2.

3.2.1. Representation, initialization and termination mechanisms
Representation schemes are used to make recognizable solu-

tions for algorithms and computers. The available representation
scheme in the literature proposed by Ghorbani and Rabbani
(2009) is a matrix representation. It includes a n� T binary matrix,
each row for one project and each column for time units. If the ele-
ment of row i and column t is one, it means that project i is selected
and started at time t. For example, for a problem with 5 projects
Fig. 2. The proposed algorithm’s pseudo code.
and makespan of 7, we need a matrix with (5 � 7). One possible
solution is as follows. In this solution, Projects 1, 2 and 3 are select-
ed and started at times 1, 1 and 5, respectively.

1 0 0 0 0 0 0
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

2
6666664

3
7777775

5�7

This encoding scheme suffers from several drawbacks. For
example, this matrix becomes very large when n and/or T is a large
number. In this case, it requires a lot of computational effort. This
matrix includes many unnecessary elements with value of zero.
We propose another encoding scheme to overcome the mentioned
issues. In this scheme, there is a string of n integer numbers each of
which shows the staring time of a project. For example, we can
represent the mentioned solution as follows.

1 5 1 0 0½ �

This scheme needs much less computational efforts comparing with
the available scheme. The value zero means that the project is not
selected.

Since MPACO is a population-based algorithm, it requires a set
of initial solutions. We generate an empty portfolio to serve as
the initial population. Then, the main colony and Pareto front is
filled with these empty ants. Initial pheromones for all walk steps
are considered to be equal. Because of using standardized decision
rules, function, values and procedures, initial pheromones consid-
ered all to be equal one. The termination criterion is a time limit
depending on problem characterizations. It is introduced later in
Section 4.3.

3.2.2. Ant generation mechanism
At each iteration, for each ant, we define a set R including pro-

jects still possible to be selected. At the beginning, set R includes all
possible projects. Each ant randomly selects the first feasible pro-
ject, and then schedules it. In scheduling phase, due to nature of
economic projects, the algorithm preferably starts the selected
projects in earlier times. This means that earlier starting times
have greater chance to be selected. To determine the probability
of each time unit as starting time, Eq. (13) is used.

St ¼
2ðT þ 1� tÞ

TðT þ 1Þ ;1 6 t 6 T ð13Þ

After selecting the first feasible project and its starting time, the
selected project and all its interdependent projects are excluded
from set R. This is to assure that projects with interdependency
are not selected.

The next phase is to select the next project from set R with
regard to feasibility rules. In this phase, if the new walk is feasible,
probability of including each selected project and its starting time
(new walk step) in pervious walk steps is calculated. The selected
project and all interdependent projects are then excluded from R. If
the walk step is not feasible, only the selected project is excluded
from R. These steps continue until there is no feasible walk step
or R is empty. Fig. 3 shows walk steps chain.

Consider a problem with 5 projects and makespan of 10. The ant
randomly selects project 1 as its first project and then randomly
starts it at time period 1 with regard to St . After this selection, R
is updated with exclusion of project 1 and all interdependent pro-
jects (for example, projects 4 and 5). In the next step, the ant
selects a project from available one (i.e., projects 2, 3). It randomly
selects project 2 with starting time of 5. R in this step includes
project 3. Thus, it selects project 3 and schedules it at time period



Fig. 3. The ant generation mechanism.
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1. In this step, R is empty and the chain of walk step finishes (see
Fig. 4).

Regarding the first objective (total benefit), ants try to select as
many projects as possible. Yet, this may result in violating the sec-
ond objective (resource usage variation). In this case, one or some
projects are randomly excluded from R to generate each ant.

As earlier discussed, the first objective is more important than
the second objective. Therefore, the pheromone updating criterion
is based on the first objective. The visibility or heuristic informa-
tion is calculated by Eq. (14).

gi;t ¼
bi;t

maxðbi;tÞ
ð14Þ

Thus, we have 0 6 gi;t 6 1. This assures that if project i with starting
time t, has bigger return, then, it has greater change to be selected
in portfolio. The probability of selecting project i with starting time t
in pervious walk steps is calculated as follow.

pi;t ¼
sa

lp;lt;i;t � gb
i;t if walk is feasible

0 otherwise

(
ð15Þ

where lp and lt are the last selected project and its start time respec-
tively. slp;lt;i;t stores the desirability (deposited pheromone) of the
last selected project and its start time (the last walk step) to any
feasible project i and its start time t(next walk step). Finally, the
overall probability of including project i with start time t in portfo-
lio ðPi;tÞ is calculated using Eq. (16).

Pi;t ¼
pi;tP
i;tpi;t

ð16Þ

After calculating Pi;t , a roulette wheel selection is applied to deter-
mine solutions. In roulette wheel selection, projects with greater Pi;t

have more chance for being selected. Note that S (Eq. (13)) is used
by ants to schedule first selected project. But after that to find next
steps (selecting next projects and scheduling them), the algorithm
uses pi;t (Eq. (16)). When all ants find their routes, two objective
functions are calculated for each ant.
Fig. 4. Example of walk steps.
3.2.3. Colonial mechanism
To enhance algorithm’s speed and diversity, after any ant in the

main colony finds its solution, a parallel local search is applied.
This local search has three operators. The first operator is for feasi-
bility checking, and it assures that generated solutions be accept-
able and feasible. The second is mutation operator. This operator
randomly chooses an element of solution matrix and randomly
changes it. This operator applied with probability Po. And the third
one is the move operator. This operator stochastically chooses two
ants, then, it randomly selects an element and exchanges the cor-
responding element between two individuals. This operator is
applied randomly with probability Pm. More information can be
found in Ghorbani and Rabbani (2009).

The parallel local search yields five individuals per each indi-
vidual. After applying parallel local search, a new colony, called
parallel colony, is constructed. Size of this colony is 5� Size of main
colony. Then, two objectives are calculated for these parallel ants.
All parallel and main ants are used to update Pareto front ants.

3.2.4. Pareto front updating mechanism
To update Pareto front, we need to add non-dominated ants to

Pareto front set and also remove ants in Pareto front dominated by
new ants added to the front. To compare new added ant with exist-
ing ants in Pareto front and Because the size of Pareto front is lim-
ited and equals to 3� Size of main colony, we use a fast non
dominated sorting and crowding distance procedures which first
introduced by Deb, Pratap, Agarwal, and Meyarivan (2002). With
these two procedures rank and crowding distance of each ant are
calculated. Ants with minimum ranking number dominate other
ants. Crowding distance is assures that when ants in Pareto front
are more than the size of Pareto front, ants with higher diversity
are chosen.

3.2.5. Pheromone updating mechanism
As mentioned earlier, local pheromone updating aims at diver-

sifying solutions. In this paper, instead of using local pheromone
updating, we apply a local search based on mimetic algorithms.
Overall pheromone updating policy is that all elite (ants in Pareto
front set) and non-elite ants (ants generated at each iteration)
deposit pheromones with pre-determined coefficients Q1 and
Q2, respectively. This can enhance both diversity and quality of
solutions. Pheromone updating formulas are as follows.

For each ant in Pareto front:

snew
i;t;h;j ¼ sold

i;t;h;j þ Q1�
Z1Pam

minðZ1Pa Þ
8i; t; h; j ð19Þ

For each non elite ant:

snew
i;t;h;j ¼ sold

i;t;h;j þ Q2�
Z1neAm

min Z1Pa

� � ; 8 non elite ant; 8i; t;h; j ð20Þ

where Q1 and Q2 have values between zero and one, Pam is m th ant

in Pareto front, neAm m th non elite ant.
Z1Pam

min Z1Pð Þ
and

Z1neAm
min Z1Pað Þ are used

to standardized s value. At the end of each iteration, pheromones
are evaporate with evaporation rate q, where q is determined and
0 6 q 6 1. Evaporation effect on pheromones is shown in Eq. (21).

snew
i;t;h;j ¼ sold

i;t;h;j � ð1� qÞ ð21Þ
4. Computational evaluation

This section describes the computational evaluations. It also
compares proposed MPACO with two other well-known algorithms,
the fast non-dominated sorting genetic algorithm (NSGA-II) and
multi-objective scatter search (MOSS). NSGAII is first introduced



Table 6
Strategy of generating low complexity level test data.

Factor Generating rule

Number of available projects n = {3, 4, . . . , 10}
Durations d = U(1, 3)
Number of different types of resources m = {1, 2}
Required resources for each projects a = U(10, 15)
Available amount of resource r = 4U(10, 15)
Makespan T ¼ maxfmax dið Þ;

P
idi � U 0:8;1ð Þg

Probability of interdependency 10%
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by Deb et al. (2002) and used for the joint problem of project selec-
tion and scheduling by Ghorbani and Rabbani (2009). MOSS is also
proposed by Ghorbani and Rabbani (2009). All these three algo-
rithms are coded in Matlab 7.12 and executed on a laptop computer
with Core i7, and Windows 7 using 4 GB of RAM.

4.1. Performance measures and experimental data

We use some prominent metrics to compare these algorithms
for both quality and diversity points of view. A good multi-objec-
tive algorithm for a specific problem is expected to satisfy two
characteristics: (1) approximated Pareto front convergence to real
optimal Pareto front and (2) diversity maintaining of approximated
Pareto front. To measure and examine these two characteristics,
we use three types of indicators. (1) Hyper volume indicator. (2)
Epsilon indicator, and (3) Spacing metrics. The first two indicators
measure quality of approximated Pareto front, and the third gauges
diversity of solutions.

The hypervolume IH is first introduced by Zitzler, Thiele,
Laumanns, Fonseca, and Da Fonseca (2003). It is defined as the vol-
ume of the objective space dominated by approximated Pareto
front. In order to calculate IH , objective space must be bounded.
If real Pareto optimal front is not available, bounding reference
point is used instead. Among different alternatives to calculate
hypervolume, this paper uses inclusion–exclusion algorithm pro-
posed by Wu and Azarm (2000). This algorithm adds volumes of
rectangular polytopes dominated by each point individually, then
subtracts volumes dominated by intersections of pairs of points,
finally adds back in volumes dominated by intersections of three
points, and so on. Also the reference point used in IH calculation
is the worst possible solution both objectives. Thus, bigger a hyper-
volume indicator, the better is the approximated Pareto front.

The epsilon indicator Ie is introduced by Zitzler et al. (2003). It
returns minimum value of e by which the approximated Pareto
front dominates the reference point. In this paper, we use epsilon
indicator with summation of component-wise. On the other hand,
the best possible solution is used as the reference point. Therefore,
the smaller an epsilon indicator is, the better the approximated
Pareto front is. Geometrical interoperation of the indicator is the
level of convexity of the approximated Pareto front to reference
point.

Spacing metric is to measure the uniformity of the approximat-
ed Pareto front. We use the metric used in Ghorbani and Rabbani
(2009) which is as follow.

S ¼ 1
ð APFj j � 1ÞD

XAPFj j

l¼1

Dl �D
�� ��" #

ð22Þ

where APF represents the approximated Pareto front and Dl is the
Euclidean distance between two consecutive solutions l and lþ 1
in approximated Pareto Front. D is the average of these distances.

We compare the performance of the three algorithms on four
different data sets: (1) low, moderate, high complexity levels and
also large sized problems. In following, we describe each of these
data sets. Projects in low complexity level have very little interde-
pendency so that selecting one specific project causes deselect of
other projects. In this level, all projects have short-term durations
and compared to this durations, makespan is very long. The num-
ber of different types of resources is small and the available
resources are much more than required resources. The method-
ology of generating this type of test data is very similar to method-
ology that used in Ghorbani and Rabbani (2009) and Rabbani et al.
(2010). Table 6 shows levels considered in these data sets.

In moderate and high complexity levels, durations, number of
resources and probability of interdependency between projects
are increased. On the other hand, makespans and portion of
available amount of resource to required resources are decreased.
Levels considered in moderate and high complexity level are
shown in Tables 7 and 8, respectively.

Although in real cases, we rarely face a problem with more than
14 available projects, we generate larger sized problems to gain
more accurate assessment of proposed algorithm. Levels consid-
ered in large sized problems are shown in Table 9.

In all these data sets, minimum makespan is max dið Þ. This
assures that at least one project can be selected and scheduled.
The benefit matrix in all data sets are generated with regard to
the following rules.

(1) Benefits for all projects and time periods are randomly gen-
erated by uniform distribution over U(100,999).

(2) With regard to the nature of problem, each row of benefit
matrix is generated in descending order.

(3) To be more close to real-world problems, it is better that
projects with longer makespans and durations release more
benefit. (Optional)

4.2. Calibration

Appropriate design of the parameters and operators significant-
ly impact on the effectiveness of metaheuristics. This section stud-
ies the behavior of the proposed MPACO regarding different
operators and parameters. There are several approaches to tune
and calibrate algorithms (e.g. full factorial, fractional factorial
experiments and etc.). Because of large number of factors, the frac-
tional factorial experiment is more efficient than the full factorial
experiment. Among different designs, Taguchi approach is the
most suitable one. In this approach, orthogonal arrays are used
to study a large number of decision variables with a small number
of trials. The response variable is converted to the signal-to-noise
(S/N) ratio. In minimization problems, the following definition for
S/N is used.

SNl ¼ �10 log
1
Nl

XNi

u¼1

1
y2

u

 !
ð23Þ

where yu is the hypervolume indicator for a given experiment and
Nl is number of trials for trial l.

In this study, we have 8 control factors: nAnt (number of ants), a
(pheromone coefficient), b (heuristic coefficient), q (evaporation
coefficient), Q1 (contribution of current ants in pheromone
depositing), Q2 (contribution of Pareto front ants in pheromone
depositing), Pm (probability move operator) and Po (probability of
using mutation operator). Table 10 shows considered levels of the-
se factors. The orthogonal array L18 is chosen since it meets all
minimum requirements. After some modifications, orthogonal
array L18 is presented in Table 11.

After performing the experiment, hyper-Volume values are
individually transformed into S/N rations. Fig. 5 shows the average
S/N ration obtained at each level. The selected level for each para-
meter is as follows.



Table 7
Strategy of generating moderate complexity level test data.

Factor Generating rule

Number of available projects n = {7, . . . , 14}
Durations d = U(3, 7)
Number of different types of

resources
m = {2 ,3, 4}

Required resources for each
projects

a = U(10, 15)

Available amount of resource r = 3U(10, 15)
Makespan T ¼ maxfmax dið Þ;0:8� Uðmax dið Þ;

P
idiÞg

Probability of interdependency 20%

Table 8
Strategy of generating high complexity level test data.

Factor Generating rule

Number of aavailable projects n = {7, . . . , 14}
Durations d = U(7, 10)
Number of different types of

resources
m = {4, 5}

Required resources for each
projects

a = U(10, 15)

Available amount of resource r = 2U(10, 15)
Makespan T ¼maxfmax dið Þ;0:5� Uðmax dið Þ;

P
idiÞ}

Probability of interdependency 30%

Table 9
Strategy of generating large size test data.

Factor Generating rule

Number of available projects n = {15, . . . , 22}
Durations d = U(10, 15)
Number of different types of

resources
m = {4, 5}

Required resources for each
projects

a = U(10, 15)

Available amount of resource r = 2U(10, 15)
Makespan T ¼maxfmax dið Þ;0:5� Uðmax dið Þ;

P
idiÞ}

Probability of interdependency 30%

Table 10
Factors and levels.

Factor Symbol Level Values

Number of ants nAnt 3 10 20 30
Pheromone coefficient a 3 1 2 3
Heuristic coefficient b 3 2 3 4
Contribution of current ants in

pheromone depositing
Q1 3 0.7 0.8 0.9

Evaporation coefficient q 2 0.6 0.7
Contribution of Pareto front Ants in

pheromone depositing
Q2 3 0.3 0.2 0.1

Probability of move operator Pm 3 0.7 0.8 0.9
Probability of mutation operator Po 3 0.1 0.15 0.2

Table 11
The modified orthogonal array L18.

# Trials q a b Q1 nAnt Q2 Pm Po

1 0.6 1 2 0.7 10 0.3 0.7 0.1
2 0.6 1 3 0.8 20 0.2 0.8 0.15
3 0.6 1 4 0.9 30 0.1 0.9 0.2
4 0.6 2 2 0.7 20 0.2 0.9 0.2
5 0.6 2 3 0.8 30 0.1 0.7 0.1
6 0.6 2 4 0.9 10 0.3 0.8 0.15
7 0.6 3 2 0.8 10 0.1 0.8 0.2
8 0.6 3 3 0.9 20 0.3 0.9 0.1
9 0.6 3 4 0.7 30 0.2 0.7 0.15

10 0.7 1 2 0.9 30 0.2 0.8 0.1
11 0.7 1 3 0.7 10 0.1 0.9 0.15
12 0.7 1 4 0.8 20 0.3 0.7 0.2
13 0.7 2 2 0.8 30 0.3 0.9 0.15
14 0.7 2 3 0.9 10 0.2 0.7 0.2
15 0.7 2 4 0.7 20 0.1 0.8 0.1
16 0.7 3 2 0.9 20 0.1 0.7 0.15
17 0.7 3 3 0.7 30 0.3 0.8 0.2
18 0.7 3 4 0.8 10 0.2 0.9 0.1
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q ¼ 0:7;a ¼ 2; b ¼ 2; Q 1 ¼ 0:9; nAnt ¼ 10; Q 2 ¼ 0:2;
Pm ¼ 0:8; Po ¼ 0:15
To assess the impact of each factor on the performance of MPACO,
we use delta test. Table 12 shows delta values obtained by each fac-
tor. The most effective factors are Q1;Q2 and heuristic coefficient
with 0.46, 0.45 and 0.339, respectively. Pm has the least impact with
0.075.
4.3. Results

This section compares MPACO against two available algorithms
in the literature, NSGA II by Deb et al. (2002) and MOSS by
Ghorbani and Rabbani (2009). The four data sets are used to eval-
uate the algorithms. Let us remind that each of these sets include
80 instances. Table 13 shows the results for both hypervolume
and epsilon indicators.

In all the levels, the proposed algorithm has better performance
than the two others. Another notable point is that in low level
MOSS has better hypervolume value than NSGAII. This is consistent
with the obtained results by Ghorbani and Rabbani (2009). Table 16
also shows that MPACO on average is almost 10% and 12% better
than NSGAII and MOSS respectively. This superiority is also seen
in Epsilon indicator. Hence, the proposed method is almost 6%
and 8% better than two other algorithms. To further analyze the
results, Figs. 6 and 7 show performance of the algorithms versus
the time for hypervolume and epsilon indicators, respectively.

Fig. 6 clearly shows the superiority of proposed algorithm ver-
sus the time. It also shows that the proposed algorithm is the best
algorithm after 20 s. All the three algorithms continue improving
significantly in the first 100 s. Table 14 shows ANOVA result for
all level of instances. It shows that in all instances, supremacy of
the proposed algorithm is significant in 95% confidence level.

Fig. 7 shows proposed algorithm has better epsilon values in all
times. This figure also reveals that after 90 s NSGA-II does not
cause any significant improvement in epsilon value. This time is
110 and 100 for MPACO and MOSS, respectively.

Table 15 shows the results of ANOVA test. It clears that the
supremacy of proposed algorithm is significant in 95% confidence
level for low, moderate and large instances. However, the obtained
epsilon mean by the proposed algorithm is better than two other
algorithms, this supremacy is not significant.

Table 16 shows the results of spacing metric. In all four data
sets, the proposed algorithm has the best value. ANOVA results
show that in low, moderate and high level of complexity, the
supremacy of MPACO is significant at 95% CL. But, in large size
problems, this supremacy is not significant.

After solving several problems in different data sets, it was
understood that the required time for solving problems depends
on the number of projects ðnÞ and makespan ðTÞ, number of
resources ðmÞ and complexity level. Thus, we propose the best ter-
mination time for each level of tested problems using a quadratic
regression function. Eqs. (24)–(27) show this termination time
for low, moderate, high level complexity and large size problems.



Fig. 5. The mean S/N ratio plot for each level of factors.

Table 12
Rank of each factor.

Factors q a b Q1 nAnt Q2 Pm Po

Level 1 �9.29 �9.217 �8.899 �9.352 �9.047 �9.069 �9.141 �9.117
Level 2 �8.951 �9.02 �9.191 �9.126 �9.122 �8.921 �9.072 �9.068
Level 3 �9.27 �9.270 �9.192 �9.371 �9.147 �9.175 �9.175
D 0.339 0.197 0.371 0.468 0.144 0.45 0.075 0.107
Rank 4 5 3 1 6 2 8 7

Table 13
The results obtained by the algorithms.

Indicator Instance Algorithm

NSGAII MOSS MPACO

Hypervolume
Low 0.63 0.72 0.73
Moderate 0.74 0.70 0.81
High 0.60 0.56 0.73
Large 0.75 0.67 0.86
Average 0.68 0.66 0.78

Epsilon
Low 0.45 0.40 0.35
Moderate 0.35 0.40 0.30
High 0.56 0.58 0.49
Large 0.32 0.40 0.28
Average 0.42 0.44 0.35

Fig. 6. Hypervolume mean values versus time.

Fig. 7. Epsilon mean values versus time.
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time ¼ �317:69n2 þ 351:85nT þ 48:71nm� 92:68T2

� 71:48Tmþ 288m2 þ 64:09n� 17:42T � 256mþ 138
ð24Þ

time ¼ 1:41n2 þ 4:32� 10�3nT � 1:22� 10�1nm� 7:69

� 10�2T2 � 1:39� 10�1Tmþ 1:50m2 � 27:94n

þ 5:14T � 7:01mþ 191:59 ð25Þ

time ¼ �5:73n2 þ 2:10� 10�1nT þ 21:66nm� 1:19

� 10�1T2 � 7:65� 10�1Tm� 26m2 þ 14:56n

þ 9:83T þ 24m� 198 ð26Þ



Table 14
Hypervolume mean value for algorithms and related p-value for each level.

Level Source DF SS MS F P

Low Algorithm 2 0.4733 0.2367 16.96 0
Moderate Algorithm 2 0.4584 0.2292 9.45 0
High Algorithm 2 1.0473 0.5237 5.28 0.006
Large Algorithm 2 1.5566 0.7783 16.29 0

Table 15
Epsilon mean value for algorithms and related p-value for each level.

Level Source DF SS MS F P

Low Algorithm 2 0.413 0.2065 18.48 0
Moderate Algorithm 2 0.3377 0.1688 7.66 0.001
High Algorithm 2 0.299 0.15 0.98 0.377
Large Algorithm 2 0.6631 0.3316 6.91 0.001

Table 16
Spacing metric mean value for algorithms and related p-value for each level.

Level Spacing metric mean p-Value

NSGA-II MOSS MPACO

Low 1.06 0.78 0.74 0
Moderate 0.67 0.84 0.65 0
High 0.81 0.90 0.72 0.024
Large 0.78 0.86 0.75 0.069
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time ¼ 2:61n2 � 2:82� 10�1nT � 21:11nmþ 1:47� 10�2T2

þ 0:96Tmþ 28m2 � 6:67n� 2:87� 10�1T þ 112m� 86
ð27Þ
5. Conclusions

This paper studied bi-objective project section and scheduling
problems. The objectives were to maximize total benefit of select-
ed projects where the benefit of each project is time dependent and
to minimize resource usage variation. We first analyzed the draw-
backs of available model and algorithms for the problem. Then, we
proposed a mixed integer linear programming model. This model
solves all shortcomings. We also proposed a multi objective ant
colony optimization including four features of ant generation, colo-
nial, Pareto front updating and pheromone updating mechanisms.
A comprehensive experiment was designed and the proposed algo-
rithm was compared with two available genetic algorithm and
scatter search. The results showed that the proposed algorithm
outperformed the two available algorithms.

Future research that can be done on the basis of this research
can be divided into two categories: modeling and solving method.
In modeling part, we recommend some considerations and devel-
opments as follow.

(1) Developing model base on the possibility of stop and resume
the projects.

(2) In this paper all sources are considered equal in weight and
value which can be prioritized according to their
importance.

(3) Considering the time dependency and relations between
projects. For example, considering that some projects cannot
be started simultaneously, or relations like FS, FF, SF and FF.
Future researches in solving method, can focus on finding better
formulation for pi;t and more efficient formulation of heuristic
information ðgi;tÞ. Also it may include applying MPACO to con-
tinuous problems and other kind of problems.
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