
i

So Your GAMS Model Didn’t Work Right
A Guide to Model Repair

Bruce A. McCarl
Professor of Agricultural Economics

Texas A&M University
College Station TX
mccarl@tamu.edu

agrinet.tamu.edu/mccarl

ii

Acknowledgments

A large number of people have contributed to this document Alex Meeraus and Wilfred

Candler directly taught me many of the techniques. However, the contributions of Erwin

Kalvelagen, Ramesh Ramen, Pete Stacy all of GAMS corporation to my knowledge stock were

not inconsiderable. Bill Nayda and Chi-Chung Chen contributed in terms of technique

development. Harvey Greenberg and Rick Rosenthal also contributed ideas at various times. In

terms of the writing Erwin Kalvelagen, Chi-Chung Chen, Uwe Schneider, Darius Adams, Tasana

Gillig, Heng-Chi Lee and Bill Nayda made numerous suggestions and corrections.

iii

So Your GAMS Model Didn't Work Right

A Guide to Model Repair

Bruce A. McCarl

Chapter 1 Introduction . 1-1

Chapter 2 Symptoms -- What Can Go Wrong? . 2-1
2.1 GAMS Didn't Get Started -- Job Control problems . 2-1
2.2 GAMS --Compilation Problems . 2-1
2.3 GAMS Execution Errors . 2-2
2.4 Computer Capacity . 2-2
2.5 GAMS Capacity . 2-2
2.6 Solver Stopped Saying it Ran Out of Resources . 2-3
2.7 The Solver Started But Terminated Unexpectedly . 2-3
2.8 GAMS Just Stopped . 2-4
2.9 Model Declared Infeasible or Unbounded . 2-4
2.10 The Model Reached an Optimal, Nonsensical Solution 2-5
2.11 Model Worked But Took Excessive Time or Memory 2-5
2.12 Models Worked But Created Excessive Output . 2-6
2.13 Items Eliminated from the Model Appear in the Output 2-6
2.14 Items Appear as Zeros in the Solution Which Should Not Be 2-7
2.15 A Preanalysis Procedure Concluded the Problem was Improper 2-7

Chapter 3 Matching Symptoms to Solutions . 3-1

Chapter 4 Looking Deeper to Find Problems . 4-1
4.1 Messages in the LST File . 4-1

4.1.1 Compilation Errors . 4-1
4.1.2 Execution Errors . 4-2
4.1.3 Error Conditions . 4-2
4.1.4 Solver Status File . 4-3
4.1.5 Solution Printout . 4-3

4.2 Expanding the Material in the LST File . 4-3
4.3 Messages from the Screen - Making a LOG File . 4-4

Chapter 5 A Strategy for GAMS Modeling -- Small to Large . 5-1
 5.1 Example in Transportation Context . 5-2
5.2 A More Complex Example . 5-3
5.3 Making Small Parts of Large Models . 5-5

iv

5.4 The Golden Rule Of Model Debugging . 5-6
5.5 Small to Large and Data . 5-7
5.5 Simple Structural Revision . 5-8

Chapter 6 Fixing Compilation Errors . 6-1
6.1 Finding Errors . 6-1
6.2 The Elusive Properly Placed Semi Colon . 6-2
6.3 Common Errors . 6-3

6.3.1 Excess or insufficient semi colons - Error A . 6-3
6.3.2 Spelling mistakes - Error B . 6-4
6.3.3 Omitted SET elements - Error C . 6-4
6.3.4 Indexing problems - Error D . 6-4
6.3.5 Summing over sets already indexed - Error E 6-4
6.3.6 Neglecting to deal with sets - Error F . 6-5
6.3.7 Mismatched parentheses - Error G . 6-5
6.3.8 Improper equation ".." statements - Error H . 6-6
6.3.9 Entering improper nonlinear expressions - Error I 6-6
6.3.10 Using undefined data - Error J . 6-6
6.3.11 Improper references to individual set elements - Error K 6-6
6.3.12 Omitting a variable, parameter, or equation definition - Error L 6-7
6.3.13 Duplicate names - Error M . 6-7

6.4 Common Error Cross Reference . 6-7

Chapter 7 Fixing Execution Errors . 7-1
7.1 Execution Errors During Model Generation . 7-1
7.2 Finding Execution Errors in Calculations . 7-3
7.3 Summary Procedure for Finding Execution Errors . 7-4

7.3.1 Calculation Based Execution Errors During Model Solution 7-6
7.3.1.1 Solver calculation error cause discovery and repair strategies . . 7-7

7.3.2 Presolve Based Execution Errors During Model Solution 7-8

Chapter 8. Presolution Diagnosis and Structural Problem Repair 8-1
8.1 Adopting an Example . 8-1
8.2 Examining Model Structure Within GAMS . 8-2

8.2.1 GAMS Internal Structural Checks . 8-2
8.2.2 Using LIMROW and LIMCOL to Look at a Model 8-3
8.2.3 Data Calculation Based Structural Checks . 8-5
8.2.3 Data Calculation Based Structural Checks . 8-6

8.3 Examining Structure With Solver Features . 8-7
8.3.1 CPLEX . 8-8
8.3.2 OSL . 8-8
8.3.3 Solvers without Presolve or with Presolve Suppressed 8-9
8.3.4 An Unbounded Example . 8-9

v

8.3.5 Solver Summary . 8-9
8.4 Presolution Structural Checking with GAMSCHK . 8-10

8.4.1 Using Analysis . 8-11
8.4.2 Using a Picture . 8-12
8.4.3 Using BLOCKPIC . 8-14
8.4.4 Using BLOCKLIST . 8-16
8.4.5 Using DISPLAYCR . 8-17
8.4.6 Using MATCHIT . 8-18
8.4.7 GAMSCHK and Nonlinear Terms . 8-19
8.4.8 GAMSCHK Summary . 8-23

8.5 Overall Summary for Structural Checking . 8-23

Chapter 9 Post Solution Model Analysis . 9-1
9.1 Correction of Models Which are Infeasible . 9-1

9.1.1 Causes of Infeasible Models . 9-2
9.1.2 Finding Causes of Infeasibility -- Basic Theory 9-3
9.1.3 Diagnosing Infeasible Solutions . 9-5
9.1.4 Details on Artificial Variable Approach to Resolving Infeasibility 9-7

9.1.4.1 Where Should Artificial Variables be Added? 9-9
9.1.4.2 Entering Artificial Variables in GAMS 9-10
9.1.4.3 How Are Distorted Marginals Identified? 9-12

9.1.5 Using IIS . 9-13
9.1.6 General Procedure for Finding Infeasibility Causes 9-17
9.1.7 Infeasibility and Non Linear Programs . 9-19
9.1.8 Infeasibility and Mixed Integer Models . 9-20

9.2 Correction of Models Which are Unbounded . 9-22
9.2.1 Solvers and Unbounded Models . 9-23
9.2.2 Finding Causes of Unboundedness -- Basic Theory 9-24
9.2.3 Details on Large Bound Approach to Resolving Unboundedness 9-26

9.2.3.1 Where Do We Add Large Bounds? 9-27
9.2.3.2 Entering Bounds in GAMS . 9-28
9.2.3.3 How Do I Find Distorted Levels? . 9-29
9.2.3.4 Comparing the Bounding Techniques 9-30

9.2.4 General Procedure for Finding Unboundedness Causes 9-31
9.2.5 NLPs, MIPs and Unboundedness . 9-33

9.3 Duality and A Single Artificial . 9-34
9.4 Unrealistic Optimal Solutions . 9-35

9.4.1 Budgeting . 9-36
9.4.1.1 Theoretical Background for Budgeting 9-36
9.4.1.2 The Budgeting Technique . 9-37
9.4.1.3 Budget Summary . 9-41

9.4.2 Row Summing . 9-43
9.4.2.1 Theory Behind the Row Summing Techniques 9-43

vi

9.4.2.2 Example . 9-44
9.4.2.3 Row Summing Summary . 9-46

9.6 GAMSCHK, Post Optimality Calculations and NLPs 9-46
9.7 GAMSCHK, Post Optimality Calculations and MIPs 9-48
9.8 Post Optimality Computations Without GAMSCHK 9-50

Chapter 10 Dealing with Models Which Abnormally Terminate 10-1
10.1 Expanding GAMS and Solver Limits . 10-1

10.1.1 Expanding Iteration, Resources and Work space 10-2
10.1.2 Allowing More Executable Code Space . 10-2
10.1.3 Expanding Solver Specific Limits . 10-3

10.2 Finding Excessive Memory Use . 10-4
10.2.1 Memory Use Problems -- Root Causes . 10-5
10.2.2 GAMS Tools for Examining Memory Use . 10-6

10.2.2.1 The Symbolic Dump . 10-6
10.2.2.2 The Profile Information . 10-7

10.2.3 Finding Memory Use Problems . 10-9
10.2.3.1 Finding Excessive Compilation Memory Use 10-10
10.2.3.2 Finding Excessive Calculation Memory Use 10-10
10.2.3.3 Finding Excessive Model Generation Memory Use . . 10-11
10.2.3.4 Finding Excessive Solver Memory Use 10-14

10.3 Scaling . 10-16
10.3.1 The Goal of Scaling . 10-16
10.3.2 The Effect of Scaling . 10-17
10.3.3 An Example of Scaling . 10-20
10.3.4 Implementing Scaling in GAMS . 10-21

10.3.4.1 Using Solver Scaling . 10-22
10.3.4.2 User Defined Model Scaling 10-22

10.3.4.2.1 GAMS User Defined Algebraic Scaling 10-23
10.3.4.2.2 Manual Scaling in a Model 10-24

10.3.5 How are Scaling Factors Determined . 10-25
10.3.6 Scaling of Nonlinear Terms . 10-27

10.4 A Priori Degeneracy Resolution . 10-28
10.5 Reformulating a Model . 10-29
10.6 Using Solver Options . 10-30

Chapter 11 Working with Advanced Bases . 11-2
11.1 How Does GAMS Form a Basis? . 11-2
11.2 Using an Advanced Basis . 11-3

11.2.1 Forming a Basis from Repeated Solves . 11-3
11.2.2 Providing a Basis to a Independent Model . 11-4
11.2.3 Through External Files from Related Models 11-6
11.2.4 By Guessing at a Starting Point . 11-7

vii

11.3 Dealing with Problematic Bases . 11-7
11.3.1 Using BRATIO to suppress a basis . 11-8
11.3.2 Resetting the Basis . 11-8
11.3.3 Structuring a Formulation to Avoid Basis Problems 11-10
11.3.4 Updating the Basis . 11-11

Chapter 12 Increasing GAMS Program Execution Efficiency . 12-1
12.1 Is Efficiency a Concern . 12-1

12.1.1 Watching the Screen to Find Speed Problems 12-2
12.1.2 PROFILE Use to Find Speed and Memory Problems 12-2
12.1.3 Looking Deeper into Complex Statements . 12-5
12.1.4 A time related search strategy . 12-6

12.1.4.1 Small to large . 12-6
12.1.4.1 Search calculations for Time Hogs . 12-6
12.1.4.2 Finding Time Hogs in Model Generation 12-7
12.1.4.3 Solution Time Hogs . 12-9

12.2 Improving Efficiency . 12-9
12.2.1 Set Addressing and References . 12-9
12.2.2 Avoiding Unnecessary Cases by Adding Conditions 12-11

12.2.2.1 Calculation Statement Specifications 12-12
12.2.2.1.1 An Aside -- Placement of Conditions 12-14

12.2.2.2 Equation Statement Specifications 12-15
12.2.2.3 Specification of Variables in Models 12-16
12.2.2.4 Post Solution Report Writing Calculations 12-18

12.2.3 Better Using Sets . 12-18
12.2.4 Trading Memory for Time . 12-20

12.2.4.1 Avoiding Repeat Calculations 12-20
12.2.4.2 Attaining Natural Ordering for Displays 12-21

12.4 Solver Efficiency Modifications . 12-21
12.4.1 Problem reformulation . 12-22
12.4.2 Advanced Basis Usage and Starting Points . 12-22
12.4.3 Problem reformulation . 12-22
12.4.4 Solver Choice . 12-23

12.5 GAMS and Solver Options . 12-24

Chapter 13. Verifying Data . 13-1
13.1 What is Wrong with the Data -- Some things to Check 13-1

13.1.1 Check for Completeness and Consistency of Input Data 13-1
13.1.2 Check for the non dynamic calculation . 13-1
13.1.3 Check for Inadvertent Multiplicative Sums . 13-2
13.1.4 Included Irrelevant Terms . 13-3
13.1.5 Check for Partially eliminated variables . 13-4
13.1.6 Calculation Specification Mistakes . 13-6

viii

13.2 Procedures to discover Problems . 13-6
13.2.1 Basic approach . 13-6

13.2.1.1 Small to Large Strategies to Check Out Subcases . . . 13-7
13.2.1.2 Example of Checking Out a Calculation 13-8

13.2.2 Check out data via calculation . 13-9
13.2.3 Code simplification to find problems . 13-10
13.2.4 Focusing in on Problematic Areas . 13-11

13.3 Tracing How Model Data are used -- Cross Reference Lists 13-12
13.3.1 Cross Reference Map . 13-13
13.3.2 GAMSMAP . 13-13

Chapter 14 Improving GAMS Output . 14-1
14.1 Report Writing . 14-1
14.2 Making Displays More Effective . 14-2

14.2.1 Display Element Ordering . 14-2
14.2.2 Controlling the Ordering of the Parameter Indices As they Appear . . 14-5
14.2.3 Reformatting the Appearance of Numbers . 14-7
14.2.4 Reformatting Item Name Case and Appearance 14-9
14.2.5 Controlling Page Size and Width . 14-10

14.3 Controlling Output Volume . 14-11
14.4 Including Slacks In the Output . 14-13
14.5 Moving Beyond Display to Put . 14-13
14.6 Interfacing with other Programs . 14-16

Chapter 15 Sensitivity Analysis . 13-1
15.1 Obtaining Ranging Analyses From the GAMS Solvers 15-1
15.2 Automatic Sensitivity Analyses Using Looping Features 15-3

Chapter 16 Conducting a Comparative Model Analysis . 16-1
16.1 Basic Structure of a Comparative Analysis . 16-1
16.2 Revising Data . 16-3
16.3 Changing Model Structure . 16-6
16.4 Solving Repeatedly . 16-6
16.5 Comparative Report Writing . 16-6

Chapter 17 Interfacing with other Programs . 17-1
17.1 Input

. 17-1
17.1.1 General Purpose Approaches . 17-1

17.1.1.1 Including files – simple variants 17-2
17.1.1.2 Including files with substitutable parameters 17-4
17.1.1.3 Including files from other GAMS programs 17-8

17.1.2 Special Sources . 17-10

ix

17.1.2.1 Incorporation of data from spreadsheets 17-10
17.1.2.2 Incorporation of data from MATLAB 17-10
17.1.2.3 Incorporation of data from ZIP and PRM files 17-10

17.2 output . 17-11
17.2.1 through put . 17-11
17.2.2 special purpose links . 17-11

17.2.2.1 Spreadsheets . 17-11
17.2.2.2 Graphics Programs . 17-11

17.2.3 Interfacing other ways . 17-12
17.4 Interactive interfaces . 17-12

17.4.1 Interactive compiled program . 17-12
17.4.2 save restart methods . 17-12

Chapter 18 Features to watch out for . 18-1
18.1 Dynamic vs static calculations --What is and is not recomputed 18-1
18.2 Fully omitted variables that won’t leave . 18-2
18.3 Partially omitted variables that stay . 18-5
18.4 Phantom Sums . 18-5
18.5 Cumulative Data Changes . 18-6
18.6 Memory Hogs . 18-7
18.7 Bases in repeated solutions . 18-7
18.8 Terms that should not be there . 18-7

References . Ref-1

Appendix I - Good GAMS modeling practices . Appendix I-1
I.1 Naming Conventions . Appendix I-1
I.2 Setting up Data . Appendix I-1
I.3 Specification of Sets . Appendix I-2
I.4 Typing of GAMS Models . Appendix I-3
I.5 Subscript Ordering . Appendix I-4
I.6 Minimizing Model Size . Appendix I-5

Appendix II: SUMMATION NOTATION and GAMS . Appendix II-1
II.1 Summation Mechanics . Appendix II-1

II.1.1 Sum of an Item . Appendix II-1
II.1.2 Multiple Sums . Appendix II-2
II.1.3 Sum of Two Items . Appendix II-2

II.2 Summation Notation Rules . Appendix II-3
II.2.1 For a Scaler Equation . Appendix II-3
II.2.2 For a Family of Equations . Appendix II-4
II.2.3 Defining Subscripts . Appendix II-8
II.2.4 Defining and Using Variables . Appendix II-8

x

II.3 Equations . Appendix II-10
II.4 Cautions and Extensions . Appendix II-10

Appendix III GAMSMAP Usage . Appendix VI-1

xi

List of Tables and Figures

Table 3. Priorities of Techniques to Use to Diagnose Improper Model Solution Outcomes . . 3-2
Table 5.1 Example Transport Model . 5-10
Table 5.1 (continued) . 5-11
Table 5.2 Example Transport Model -- Larger Version

. 5-12
 . 5-12
Table 5.2 (continued) . 5-12
Table 7.1. GAMS Input with Model Generation Errors . 7-11
Table 7.2. GAMS LST File for Model With Generation Errors . 7-12
Table 7.3 Example with Execution Errors in Calculations . 7-13
Table 7.4 LST file for Model Calculation Execution Error Example 7-14
Table 8.1 GAMS Input for Basic Example . 8-25
Table 8.1 GAMS Input for Basic Example(continued) . 8-26

Figure 8.1 Tableau of Example Model . 8-27
Table 8.2 GAMS Input for Throughly Messed Up Example . 8-28
Table 8.2 GAMS Input for Throughly Messed Up Example (continued) 8-29
Table 8.3 LIMROW AND LIMCOL Output . 8-30

Table 8.3 LIMROW AND LIMCOL Output(continued) 8-31
Table 8.4 LIMROW Output After Set Reordering . 8-31
Table 8.5 Calculations to Find Matrix Errors Using Basic GAMS 8-33

Table 8.6 Displays of Calculations to Find Matrix Errors 8-34
Table 8.7 Abstracted CPLEX Output for Messed Up Problem 8-35
Table 8.8 Abstracted OSL Output for Messed Up Problem . 8-36

Table 8.9 Typical Output with Unbounded Model . 8-38
Table 8.10 Conditions under which Analysis will Advise of Potential Difficulty for Equations

. 8-39
Table 8.11 Conditions under which Analysis will Advise about Potential Difficulties for

Variables in a Maximum Problem. 8-40

xii

Table 8.14 Picture of Basic Example . 8-43
Table 8.15 Picture of Thoroughly Messed Up Example . 8-45
Table 8.14 Picture of Thoroughly Messed Up Example (continued) 8-46
Table 8.16 PICTURE for Selected Submatrix . 8-47
Table 8.17 BLOCKPIC Output . 8-48
Table 8.18 BLOCKPIC Aggregate Block Picture -- ASM Example 8-50
Table 8.19 BLOCKLIST Output . 8-51
Table 9.2 List of All Possible Infeasible or Unbounded Conditions from GAMSCHK

Advisory Procedure. 9-52
Table 9.3 Output from Infeasible Model with Artificials . 9-53
Table 9.3 (continued) . 9-53
Table 9.4 Output on Small Unbounded Example to Original Model 9-55
Table 9.5 Solution for Large Unbounded Example . 9-56
Table 9.6 NONOPT Output for Unbounded Model after Large Bounds Applied 9-56
Table 9.7 Tableau of Budgeting Example . 9-58
Table 9.8 GAMS Solution for Budget Example Model . 9-59
Table 9.9 Parts of POSTOPT Output for Budget Example Model . 9-60
Table 9.10 Row Summing Example . 9-61
Table 9.11 GAMS Solution for Row Summing Example Model 9-62
Table 9.12 POSTOPT Output for Row Summing Example Model 9-63
Table 10.1 Example Model for Memory Discussion

. 10-31
Table 10.2 Example of Symbol Table . 10-32
Table 10.3 Example of Profile Output . 10-33
Table 10.6 Relationships Between Items Before and After Scaling 10-35
Table 10.7 Example of GAMS Automatic Scaling . 10-36
Table 10.8 Example of Manual Scaling in GAMS . 10-37
Table 11.1 Simple Model Basis Example . 11-12
Table 11.2 Simple Example Generating a Basis Using GAMSBAS 11-13
Table 11.3 GAMSBAS Basis File . 11-14
Table 11.4 Files Including a Basis . 11-15
Table 11.5 Example with Saved and Reset Basis . 11-16
Table 16.1. Example of Comparative Run . 16-8
Table 16.2. Comparative Report Writing Output . 16-10

1-1

So Your GAMS Model Didn't Work Right

A Guide to Model Repair

Bruce A. McCarl

Chapter 1 Introduction

GAMS models rarely work perfectly the first time they are submitted. This document

provides a guide to fixing imperfectly working models. Modeling problems span the gamut from

GAMS compilation and JCL difficulties through improper model formulation and excessive use of

computing resources. Repair of these problems involves many potential types of activities

including changing JCL, correcting typing or syntax errors, recoding GAMS equations for

improved performance, or altering model structure. This document discusses problem symptoms,

ways of finding out more about problems, tools to aid in structural diagnosis and other useful

utilities.

In presenting this material we adopt a two-part approach. First, we discuss the symptoms

defining: a) what type of problems can arise; b) how to recognize problems; and c) aspects of the

GAMS output that provide additional information. Second, we discuss a set of remedies which

may be employed. We also provide a cross reference table that gives a prioritized list of remedies

to try given a problem has arisen.

The presentations in this document spans multiple levels of GAMS and modeling

expertise. For example, the discussion of compiler error repair is for the novice, while the

discussion of execution time reduction is aimed at experienced GAMS users. Similarly, the model

structural error detection section is oriented toward experienced modelers.

1-2

The reader should note that in presenting this material we include a number of GAMS

features which are only present in GAMS 2.25 versions above release 90. Thus, those with older

systems may need to update in order to use all referenced features.

Finally, we should note that in construction of this document our philosophy is oriented

toward fixing a model by oneself. Users may find that the remedies here are inadequate or may

not be able to find a way to a problem by themselves. In such a case, one can seek help through

the GAMS mailing list which hosts an email based dialog between users. One can use this forum

to address questions to others including a number of very experienced users and possibly get

answers. The list may be joined by sending a message to GAMS-L@vm.gms.de.

1-3

Part I

Common Problems

2-1

Chapter 2 Symptoms -- What Can Go Wrong?

The GAMS modeler is far from finished when the GAMS input stream has been typed and

submitted for initial processing. Problems of varying degrees of subtlety can occur. Here we

provide a list of potential problems and reference some remedies.

2.1 GAMS Didn't Get Started -- Job Control problems

One can submit a job and get messages such as "file not found", "unknown procedure"

etc. This indicates job control language problems. This topic will not be extensively discussed

herein as the problems usually involve either bad typing, improper file locations, inadequate file

reference paths, or an incorrect GAMS installations among other possibilities. Furthermore the

remedies are often computer system specific and we are attempting a computer system

independent presentation. Such problems are often best resolved by retyping the command or

contacting a local computer expert. The GAMS user manual (Brooke, Kendrick and Meeraus

along with subsequent editions including the one now on the web at www.gams.com), the GAMS

installation notes for a computer system, local README and TXT or DOC files are the best

sources of hints to repair job control problems. The GAMS mailing list (gams-L@vm.gmd.de

)also provides a way to get advice from experienced users. The are only a few instances below

where such material is covered.

2.2 GAMS --Compilation Problems

Once the GAMS job is properly submitted the first stage, which virtually always generates

errors, is compilation. Users watching the execution of a program are sometimes dismayed to get

the message: COMPILATION ERRORS with an indication of numerous errors. Chapter 6

covers finding and fixing compilation errors.

2-2

2.3 GAMS Execution Errors

After passing the compilation stage, GAMS executes all calculations preceding the solve,

generates the model, sends it to the solver then does post solution calculations. During these

stages execution errors may occur. These generally involve two causes: 1) mathematical

difficulties due to division by zero or improper exponentiation; 2) generation of an obviously

infeasible model; or 3) solver failure. Suggestions for diagnosis and repair appear in Chapter 7.

2.4 Computer Capacity

GAMS can terminate because it reached computer hardware limits. Such limits include

running out of disk storage space or RAM memory. Chapter 10 covers capacity expansion and

problem size reduction.

2.5 GAMS Capacity

One can run into problems with GAMS capacity. These generally involve limits on the

problem size or the amount of code that is allowed in a particular module. This requires that one:

a) insure that the requested solver is available in other than demonstration mode, b) cut down the

problem size if needed, or c) instruct GAMS to make provisions for a larger problem. In the

latter case, the GAMS printout usually makes suggestions on how to repair the problem. For

example one might be told to add the option CODEX=1 to DOS implementations or -CODEX 1

in UNIX implementations.

The capacity constraints for GAMS solvers as mentioned Brooke, Kendrick and Meeraus

are very out of date. GAMS can handle much larger problems than those mentioned. There are

capacity limits still imposed, but to the authors knowledge are not in the available literature and

are quite large. Some of these limits are machine specific so no attempt will be made here to

2-3

specify limits as that information too would soon be out of date.

2.6 Solver Stopped Saying it Ran Out of Resources

Solvers may also fail because they exceed a resource (time) or iterations limit. In such

cases one can repair the problem using the OPTION statements involving RESLIM or ITERLIM

as discussed in Chapter 10. There also are solver specific iteration or other resource limits which

they can reach. See the solver manuals or the treatments below on GAMS solver option files for

details.

2.7 The Solver Started But Terminated Unexpectedly

GAMS may terminate with a message indicating a lack of progress. This indicates

numerical problems. When solvers fail because of numerical difficulties or use an unrealistically

large amount of resources to make little progress, the modeler is often in an awkward position.

However, several actions may alleviate the situation.

First, examine whether the model specification is proper. The section on structural

checking in chapter 8 gives some techniques for examining model structure.

Second, try to resolve degeneracy induced cycling as discussed in chapter 10. Apparently,

even the best solvers can become stuck or iterate excessively in the presence of massive

degeneracy. Some solvers in GAMS, at least OSL and CPLEX, contain automatic degeneracy

perturbation procedures while others try to manage cycling through other schemes. When this is

not the case, our experience indicates one should use an a priori degeneracy resolution scheme as

discussed below. We have always observed reduced solution times with this modification.

Third, a solver may fail because of poor scaling. Often one needs to rescale the model to

narrow the disparity between coefficient magnitudes. Scaling techniques and tools to help in

2-4

scaling are discussed in chapter 10.

Fourth, the model may have problems with the basis. Chapter 11 discusses the issue and

possible remedies.

All of the preventive techniques for avoiding solver failures can be used before solving a

model. Modelers should check structure and consider scaling before attempting model solutions.

However, they should not usually employ degeneracy resolution until they identify a problem.

2.8 GAMS Just Stopped

One may encounter the situation where GAMS begins but stops for no apparent reason.

There may be several causes for this. First, one may in fact has reached some kind of limit inside

GAMS and needs to investigate the listing file farther to see what is happening when alter GAMS

option or the solver option file. Second, one may have run out of memory. One may have

reached some a kind of unusual termination. Here one needs to rerun the model and observe

messages on the screen. One can also redirect the screen output to a file using the option LO=2

and examine that file (ordinarily if they call the GAMS input my model the LO = 2 file will direct

output to MYMODEL.LOG). Chapter 10 discusses repair of the types of problems which may

cause this failure.

2.9 Model Declared Infeasible or Unbounded

GAMS can terminate the solve process with the message that the model is infeasible or

unbounded. This situation often marks the beginning of a difficult exercise directed toward

finding the underlying cause of such a result. There are several techniques one can use when this

occurs as discussed in the beginning of Chapter 9. First, examine the LST file and observe the

messages about the infeasibility. Second, check the model structure looking for obvious model

2-5

formulation defects. Third, use artificial variables to identify the equations involved with an

infeasibility. Fourth, use large upper bounds to find the variables involved with the

unboundedness. Finally, use the techniques called budgeting and row summing.

2.10 The Model Reached an Optimal, Nonsensical Solution

Unfortunately, optimal solutions can be unrealistic. A declaration of optimality means the

problem has a mathematical optimum. However, mathematical optimality does not necessarily

imply real world consistency (Heady and Candler). Usually, improper problem specification or

assumption violations may cause unrealistic solutions. Cases arise where the model solution is

improper because of: a) omitted constraints or variables; b) errors in coefficient estimation; c)

algebraic errors; or d) coefficient placement errors.

Basically, a model may be judged improper because of incorrect valuation or allocation

results. Valuation difficulties arise from the reduced cost or shadow price information. Such

items take on values when primal reduced costs are formed. Allocation difficulties arise when the

slack or decision variable values are unrealistic. The values of these items are formed through the

constraint interactions. Thus, to diagnose the cause of the unrealistic solution, one investigates

either the reduced costs associated with the nonbasic primal variables or the calculations inherent

in the primal constraints. Two techniques are presented in Chapter 9, one for the investigation of

reduced costs, which we call "budgeting"; and another for the reconstruction of the constraint

calculations, which we call "row summing."

2.11 Model Worked But Took Excessive Time or Memory

GAMS may unnecessarily execute slowly or use excessive memory. There are several

ways of speeding up execution. These divide into two classes: speeding up solution processes

2-6

and speeding up non solution calculations. One can also use the GAMS Profile command to find

speed problems. Memory use also can be managed. Chapters 10 and 12 contain material on the

resolution of such problems.

2.12 Models Worked But Created Excessive Output

 New users to GAMS can solve models and in effect lose the answer because all the

output GAMS creates. Output can be managed by a) suppressing row and column listings using

the options statement on LIMROW and LIMCOL; b) eliminating the cross reference list by using

the $ sign control

$OFFSYMLIST,OFFSYMXREF

 c) eliminating the presence solution printout by using OPTION SOLPRINT=OFF or d) by using

the onlisting and offlisting syntax. Similarly, one must make sure that the active display

statements are those wished. Each of these is discussed in the original GAMS manual (Brooke,

Kendrick and Meeraus). One can also manage output by using GAMS put statements to save a

compact output file or by using the JCL save and restart options in conjunction with a small file

which carefully manages the display output. Chapter ?? covers output management.

2.13 Items Eliminated from the Model Appear in the Output

Sometimes one needs to solve a model repeatedly and in this repeated solution process

eliminate various variables’ and/or equations then find that these variables’ and/or equations still

appear in the output. This occurs because by default GAMS merges rather than replaces the

solution, thus old values will be retained for eliminated features. A GAMS option statement

(OPTION SOLPRINT=REPLACE) for the most part will eliminate this difficulty(note a difficulty

remains in the variables section when individual entries in a variable block are eliminated with $

2-7

commands users now need to manually zero variables and levels in repeat solutions if difficulties

are encountered). Chapter 18 discusses this case.

2.14 Items Appear as Zeros in the Solution Which Should Not Be

Models which are not well scaled can generate solutions where for example shadow prices

which should be non zero are reported as EPS. Then one should consider lowering the optimality

tolerance in the solver option file. For example in MINOS shadow prices and reduced costs are

zeroed if they fall below the optimality tolerance times the norm of the dual vector.

2.15 A Preanalysis Procedure Concluded the Problem was Improper

The presolve analysis in OSL and some other solvers prescan the model formulation

eliminating equality constraints , examining the feasibility of constraints and converting constraints

into upper or lower bounds to make the problem simpler to solve. On occasions these procedures

can solve the problem and/ or conclude it is infeasible. Occasionally unusual output occurs and

users may not wish this to occur. In such cases one should suppress the presolve option. The

solver manuals discuss how to do this.

3-1

Chapter 3 Matching Symptoms to Solutions

This section will contain a prioritized listing of what to do given a symptom has arisen in

the format of a table such as the one attached

3-2

Table 3. Priorities of Techniques to Use to Diagnose Improper Model Solution Outcomes

Type of Solution
Outcome

Structural
Checka

Degen.
Resol.

Scalinga

Artificial
Variables

Upper
Bounds Budget

Row
Sum

Solver Failure 1 3 2 5 4

Unbounded Solution 1 3 2 4

Infeasible Solutions 1 3 2 4 5

Unsat. Optimal
Solutions

1 2 2

Notes: The entry in the table gives information on the order in which to try techniques with the
technique numbered 1 being the item to try first.

a This technique could be employed before any solving occurs. The technique also can be used
when problems appear.

Solutions may be speeded up in seven ways: 1) the algebraic model structure may be

changed to facilitate faster execution; 2) the gams instructions may be altered to make sure that

frivolous elements are not considered; 3) an advanced basis may be entered to facilitate solver

operation; 4) the problem can be scaled; 5) a starting point may be entered to facilitate nonlinear

solver operation; 6) pre-solution analysis tools may be used to speed up problem execution; 7)

solver options may be altered; and 8) cycling can be avoided.

4-1

Chapter 4 Looking Deeper to Find Problems

Often when GAMS fails the information one gets from the screen does not identify what is

wrong. For example, the message "42 COMPILATION ERRORS" or the message "3000

EXECUTION ERRORS" identifies the general type of problem, but does not tell why or where

this happens. Usually additional detail can be found in the list (LST) and possibly the LOG file.

There are ways one can expand the information content of the LST file and create the LOG file.

Finally there is information which appears on the screen. This chapter discusses each of these

items briefly.

4.1 Messages in the LST File

The LST file contains, depending upon the termination status, several types of

information about GAMS difficulties. These include:

a) Compilation messages

b) Execution messages

c) Error condition messages

d) The solver status flag

e) Solution file messages

Each of these will be discussed in order.

4.1.1 Compilation Errors

When a model is solved and there are errors due to typing, absence of semicolons,

mismatched parentheses, etc. GAMS generates a set of compilation error messages. These

messages identify the place at which an error occurs, a numerical code relative to that error, and a

description of messages by error number. Chapter 6 discusses how to repair such errors. Error

locations are demarcated by four asterisks.

4-2

4.1.2 Execution Errors

After a model has successfully been compiled, GAMS then begins execution. During

execution, errors can arise either when calculations are performed or when the model is being

generated (while the variables and equations are being setup for the solver). There are three main

causes of execution errors. First, arithmetic difficulties can arise usually involving division by

zero or improper exponentiation (i.e. raising a negative number to a fractional power). Second,

the solver may fail causing an execution error (see the section on solver failures). Third, obvious

infeasibilities may be encountered during model generation. These infeasibilities are usually

caused by, for example, lower bounds being greater than upper bounds or an equation without

any variables present equaling a positive value.

The exact type of execution error can only be found by looking at the LST file. The LST

file contains a message indicating the line number in the source GAMS code on which the error

occurred. For example one might find a message indicating an undefined operator in line 407.

Chapter 7 gives techniques for finding such errors.

4.1.3 Error Conditions

There are a number of error conditions which can arise during execution of GAMS. One

that is somewhat infrequently encountered involves GAMS running out of internal memory for

code. In such a case GAMS provides a message on the screen which suggests the listing file be

examined. In the listing file the message "MAXIMUM Executable Code Size of 30000

Exceeded" followed by the suggestion "TRY the GAMS Parameter CODEX = 1 or Higher."

This would tell the user to rerun with the command GAMS MYFILE CODEX = 1. This error

messages again marked by four asterisks in the list file.

4-3

4.1.4 Solver Status File

On occasions GAMS will fail and then include the solver status file in the LST file (or

leave behind the file GAMSSOLU.SCR . One should look at this printout including the scaling

information summarized at the top. The top or bottom of the status file can contain an EXIT

condition. For example running MINOS with a small Super Basics limit causes a message like

"EXIT.-The Super Basics Limit is Too Small".

4.1.5 Solution Printout

One may also find information about the optimality status and other solution difficulties in

the solution printout. Two types of information are present, the solver status and the

variable/equation status. The solver status indicates whether the model is optimal, unbounded,

infeasible, an intermediate optimal, etc. The variable status identifies variables which are non-

optimal (marked with NOPT) in a unbounded or intermediate solution and variables or equations

which are not feasibly satisfied (marked with INFES) in an infeasible solution. A section on fixing

unbounded variables and unfeasible equations appears in chapter 9.

4.2 Expanding the Material in the LST File

One may find that the LST file does not contain all that it could to diagnose a problem. In

such a case the modeler should consider: a) expanding the printout using the OPTIONS

LIMROW/LIMCOL, and SOLPRINT; b) adding $ONSYMXRFF ONSYMLIST to create the

cross reference listing; c) using the PROFILE and PROFILETOL options to insert information on

the execution time used by the GAMS statements (see discussion in chapter 10); d) adding

memory dumps to receive information on the memory utilization of the arrays (see discussion in

chapter 10); e) use GAMSCHK to receive structural information (see discussions in chapters 8

4-4

and 9); and f) create a LOG file as discussed next.

4.3 Messages from the Screen - Making a LOG File

 During GAMS execution information is listed on the Screen. There is not a lot of

information from this screen that is not in the LST file, but in some cases vital additional

information is present. Several pieces of information can be gained from observing the screen.

First, one can gain added appreciation for termination conditions. The screen reports number of

compilation errors, optimality status, incidence of execution errors, etc. However, all of this also

appears in the LST file. One can gain information about the relative execution time of individual

statements. For example if a particular statement is not in a loop and during generation of

execution its number stays on the screen for a long time, then one can conclude this is a statement

that is using a lot of execution time. On the other hand the OPTION PROFILE command is a

much more effective way of systematically gathering this information(see chapters 10 and 12).

This problem with getting information off the screen is one must be staring at the screen all the

time and some computers execute very quickly. Third, certain types of execution errors and

presolve messages only come to the screen. Fourth in cases with unusual terminations the screen

may be the only place where such information is found. One can redirect the screen output by

using the JCL command LO=2 which saves the screen output to a file. The file is ordinarily

named with the GAMS code name with a .LOG extension. Thus, GAMS MYFILE LO=2 will

create the file MYFILE.LOG which contains the screen contents. However, this may not save all

of the screen output since the last output buffer is lost(see the discussion in chapter 10). In

particular system messages like segmentation faults will not be redirected.

Part II

Repairing Problems

5-1

Chapter 5 A Strategy for GAMS Modeling -- Small to Large

GAMS allows one to work with large models. PC based GAMS can be used to solve

problems with tens of thousands of variables and equations. However, debugging formulations

that big is not easy.

Many GAMS users are overly impressed with how easily GAMS handles large models.

They often feel such a facility means they should always work on the full model. The result is a

very large, sometimes extremely large, model in the very early stages of model development.

Our advice is don't take this route. First, concentrate on a small-scale implementation.

Carefully check out how the data are entering the model. Insure that the model formulation is

correct. Satisfy yourself that the solution contains appropriate levels of the decision variables.

Implement report writing instructions and any repeated scenario based solves that need to be

done. Make sure that the model is numerically robust and appropriately scaled. Generally get

the model in good shape before proceeding to the large data set.

All of these things can easily done in a small model setting without having to deal with the

complexities of the large data set. The larger the model the longer everything takes . This

includes the solution process, the time for model compilation, the time it takes for an the editor to

load in the listing. Generally, time expands exponentially. Often frustration will be the result even

when one is trying to find some relatively small data problems.

The structure of GAMS does provide one with the ability to work from small to large.

Our recommendation is that this always be exploited. Suppose we illustrate the reasons for our

recommendation with examples .

5-2

5.1 Example in Transportation Context

Let us illustrate the small to large procedure in the context of a transportation model.

Table 5.1 contains a GAMS input file for a transportation model. This file contains several

sections. The first part (lines 1-22) defines the data identifying the supply points (called PLANT)

and destinations (called MARKET) as well as the available supply at each plant, the required

demand at each market and the distance from each plant to each market. The second section

(lines 23-26) contains data calculations where cost is expressed as a function of distance In the

third section (lines 27-49) the model is defined. The fifth section (lines 51-53) solves the model.

The sixth section (lines 54-93) engages in report writing.

We can use this example to illustrate the small to large point. Suppose we set up another

version of the model where we have more supply and demand locations. In that input string

(Table 5.2) we expand the problem to 10 supply and 5 demand points. Let us examine what

happened when the formulation was expanded. In this case:

a) The supply and demand sets were expanded to their new size;

b) the supply availability and demand requirement data were expanded and altered

to cover all points; and

c) the distance table was expanded to include all entries.

The data calculation, model definition, model solution and report section writings are identical to

that in lines 23-93 in Table 5.1. Also the structure and set names in the data section are identical

but the data contents vary (i.e. lines 1-3, 6, 9, 14 and 19 have exact counterparts in Table 5.1).

The question now is so what? The example shows why the small to large approach is

beneficial because of what we did not have to do. There were no changes in the data structure

5-3

nor in the data calculation, model structure, or report writing. Only the specific data elements

were changed. One can fully work out the GAMS implementation in a smaller setting then

expand to a larger setting without bearing the computational and human cost of dealing with a

large data set and the associated output.

This does not mean that one will always be able to do everything perfectly within the small

model. However, if one judiciously develops the small data set so it has all the features of the

large data set, these authors have found that most of the work can be done in the simpler setting.

Thus, if we were going to eventually use 200 supply and 100 demand locations we could preserve

exactly the same code from lines 23 there on and only have to revise the data element definitions.

5.2 A More Complex Example

The primary importance of the small to large point cannot be overemphasized. Thus, we

develop a second more complex example. One of these authors maintains the US Agricultural

Sector model called ASM (McCarl, et al.). The small version of ASM is included on the disk

under the Chapter 05 subdirectory ASM. This model has all the structural features of the actual

ASM implementation. This version is run by the file R.BAT which appears below.

COMMAND /C GAMS ALLOFIT PW=80 S=.\T\SAVE1
COMMAND /C GAMS ASMMODEL.93 PW=80 R=.\T\SAVE1 S=.\T\SAVE2
COMMAND /C GAMS ASMSOLVF.NB PW=80 R=.\T\SAVE2 S=.\T\SAVE3
COMMAND /C GAMS ASMREPT.93 PW=80 R=.\T\SAVE3

The file “ALLOFIT” integrates most of the ASM data and is listed below.

$OFFSYMLIST OFFSYMXREF
$INCLUDE “SETS.SML”
$INCLUDE “REPTSETS.93"
$INCLUDE “DEMAND.SML”
$INCLUDE “FPDATA.SML”
$INCLUDE “PROC.SML”
$INCLUDE “CROP.SML”

5-4

$INCLUDE “LIVE.SML”
$INCLUDE “MIX.SML”
$INCLUDE “NATMIX.SML”
$INCLUDE “EROSION.SML”
$INCLUDE “ASMCALSU.93"
PARAMETER CBUDDATA (ALLI, SUBREG, CROP, WTECH, CTECH, TECH) CROP BUDGET
DATA; CBUDDATA (ALLI, SUBEG, CROP, WTECH, CTECH, TECH)

 = CCCBUDDATA(ALLI, SUBREG, CROP, WTECH, CTECH, TECH);
OPTION KILL=CCCBUDDATA;
$INCLUDE “CRP.SML”
$INCLUDE “ASMSEPER”

This ALLOFIT file includes a number of other files. All the files with the names that end with

.SML are small versions of larger data sets. These include data sets which define the GAMS sets

(SETS.SML), sectoral demand (DEMAND.SML), farm program data (FPDATA.SML),

processing (PROC.SML), crop production (CROP.SML), livestock production (LIVE.SML),

historical crop mixes (MIX.SML), livestock commodity distribution among states

(NATMIX.SML), crop erosion data (EROSION.SML), and conservation reserve program

participation (CRP.SML). The ASM structure also contains files which are independent of

problem size which define the sets used in report writing (REPTSETS.93), the calculations used

in setting up the model (ASMCALSU.93), parameters for the use of separable programming

(ASMSEPER), the programming model structure (ASMMODEL.93), the model solution process

(ASMSOLVF.NB) and the report writer (ASMREPT.93). These latter files are the same

regardless of whether small or large data sets are being used. The .SML files are relatively small

subsets of the more general data. We use this version in implementing model and report writing

changes. When we have verified our model structure we turn to a second ALLOFIT file where all

the .SML extensions are changed to .LRG and the full model is examined. For example, if one

contrasts the SETS.SML file its layer counterpart with (SETS.LRG) one can see the same

structure is used, although many more elements appear in the .LRG file.

This is also one other point relative to the use of small model versions. In the ASM

5-5

Sector model use there are times we wish to add various features or modify features with respect

to particular set elements. For example at one point we were interested in examining and working

with energy crop (biomass) production. In that particular case we altered the small model data

sets so we were sure to include a region where we would implement biomass production, since in

previous small model versions we didn’t have such production. Thus we tailored the small model

to allow us to develop and test additional model components before we fully implement them in

the large model. Again this strategy allows one to fully work on the GAMS calculation, model

and report writing instructions making sure that the structure is proper before turning to the larger

empirical counterpart.

5.3 Making Small Parts of Large Models

The small to large strategy can also be applied in the large model context in terms of

computer implementation. This involves use of restart Files. In particular consider the overall

ASM structure of the model depicted in R.BAT including the ALLOFIT, model, solve and report

writing files. We could have made ALLOFIT an all inclusive file rather than running the

ASMMODEL.93, ASMSOLVF.NB and ASMRREPT.93 separately through restart files as in

R.BAT. Such an expanded ALLOFIT File follows.

$OFFSYMLIST OFFSYMXREF
$INCLUDE “SETS.SML”
$INCLUDE “REPTSETS.93"
$INCLUDE “DEMAND.SML”
$INCLUDE “FPDATA.SML”
$INCLUDE “PROC.SML”
$INCLUDE “CROP.SML”
$INCLUDE “LIVE.SML”
$INCLUDE “MIX.SML”
$INCLUDE “NATMIX.SML”
$INCLUDE “EROSION.SML”
$INCLUDE “ASMCALSU.93"
PARAMETER CBUDDATA (ALLI, SUBREG, CROP, WTECH, CTECH, TECH) CROP BUDGET
DATA; CBUDDATA (ALLI, SUBEG, CROP, WTECH, CTECH, TECH)

 = CCCBUDDATA(ALLI, SUBREG, CROP, WTECH, CTECH,
TECH);

5-6

OPTION KILL=CCCBUDDATA;
$INCLUDE “CRP.SML”
$INCLUDE “ASMSEPER”
$INCLUDE “ASMMODEL.93"
$INCLUDE “ASMSOLVF.NB”
$INCLUDE “ASMREPT.93"

where the last 3 lines are newly included. Now suppose we wished to use this implementation to

fix the report writer the (ASMREPT.93 File). That means that in order to work on that file we

have to redefine and execute the data setup, data calculation, model setup and model solution

before our report writer runs. On the other hand if we use save and restart files as in the R.BAT

file above notice that we could (on a PC) simply comment out the first three instructions in

R.BAT as follows and simply work with the report writer.

rem command /c gams ALLOFIT.SML pw=80 s=.\t\save1
rem command /c gams ASMMODEL.93 pw=80 r=.\t\save1 s=.\t\save2
rem command /c gams ASMSOLVF.NB pw=80 r=.\t\save2 s=.\t\save3
command /c gams ASMREPT.93 pw=80 r=.\t\save3

Further we can go into the report writer file and by the judicious use of $ONTEXT/$OFFTEXT

commands deactivate the other parts of the report writer just working with the particular

calculation that we are focused on. By using this strategy one can usually revise a calculation and

test its execution very quickly. This is particularly important with large models as some models

take a day or two to solve and one does not wish to repeat the solution very often.

5.4 The Golden Rule Of Model Debugging

The above material puts us in a position where we can now summarize a recommended set

of steps which we think should be pursued by all when debugging GAMS models. The rule

guiding these steps is WORK FROM SMALL TO LARGE. The steps are:

a) Set up a small data set representing the full model with all structural features

included (i.e. the final set names and all parameter names but with less elements in

the sets)

5-7

b) Implement all data calculations, model features and report writing calculations.

c) Exhaustively check the results of Step b with the small data set making sure

calculations are correct for data items, model coefficients and report writing. Also

verify that the model equations are proper and that the solution makes sense.

 d) Save the small model and implement a full version with the full data set. It may be

desirable at this point to segment off the data parts of the input from the

calculation, model definition and report writing so independent data files are

maintained (see the R.BAT file in the ASM example).

e) Test the larger model implementation and verify its accuracy. Do this by isolating

parts of large model to the extent possible. For example, when working on input

data calculations, suppress solutions until the input data are correct. Similarly,

when working on the model structure start from a restart file with all input data

calculations complete.

One additional suggestion: we feel that one should keep the small model alive. As

additional structural features are added to the large model one should also alter the small model.

We realize that not everything can be done in the small model. However, we have encountered

rarely encountered a case where the “extra” effort to work with the small model did not save 10

times the work and frustration of dealing with the large model.

5.5 Small to Large and Data

A strategy that can be exploited in the small to large model development context involves

data. Often data development lags behind model development and is the most expensive part of

the modeling exercise. When data are gathered for models which have not been completely

5-8

conceptualized it is often the case that either data are collected which are not needed in the model

or essential data are not initially collected (when they could have been gathered cheaply) and

need to be gathered at higher cost later. However, with GAMS it is often desirable that one

implement a model using “invented or made up” data then later completed using the real data.

Employment of such a process often reveals information about desirable data forms and

characteristics as well as relationships between multiple data items before beginning the detailed

work of obtaining that data. This process often improves communication with those providing

data shortening the data gathering time.

One caution, modelers need to careful to assure that the data forms that they assume are

consistent with the data available. Modelers must hold general discussions with the modeling

client on general data availability but then can structure the model data requirements before the

data absolutely become available. This will help the project avoid false starts as data needs will be

completely conceptualized before they are sought.

Such a process also helps the modeler to more thoroughly think about the problem as one

has to conceptualize develop the data interrelationships without being terribly influenced by the

exact form and limitations of the data at hand. Thus one can come up with "proper" data

requirements even though they may involve a more complex data specification process.

5.5 Simple Structural Revision

One more argument can be made for using the small to large strategy. Sometimes models

need to be reformulated as the model structure or calculations need to be dramatically changed

when something present or omitted is causing the model to have unrealistic solution. In such

cases, modelers often find themselves playing with the model, examining alternative formulations..

5-9

This exercise is facilitated greatly by the use of a modeling system such as GAMS where

alternative formulations can easily be tried out. The speed this exercise is greatly enhanced when

dealing with a small data set that solves rapidly after new features are added. Don't let this

advantage slip away by dealing with too large of a data set. A small data set allows one to rapidly

manipulate while intimately studying formulation structure and solution details

5-10

Table 5.1 Example Transport Model

 1 * DATA DEFINITION
 2
 3 SETS PLANT PLANT LOCATIONS
 4 /NEWYORK , CHICAGO , LOSANGLS /
 5 MARKET DEMAND MARKETS
 6 /MIAMI, HOUSTON, MINEPLIS, PORTLAND/
 7
 8 PARAMETERS SUPPLY(PLANT) QUANTITY AVAILABLE AT EACH PLANT
 9 /NEWYORK 100, CHICAGO 275, LOSANGLS 90/
 10 DEMAND(MARKET) QUANTITY REQUIRED BY DEMAND MARKET
 11 /MIAMI 100, HOUSTON 90,
 12 MINEPLIS 120, PORTLAND 90/;
 13
 14 TABLE DISTANCE(PLANT,MARKET) DISTANCE FROM EACH PLANT TO EACH MARKET
 15
 16 MIAMI HOUSTON MINEPLIS PORTLAND
 17 NEWYORK 1300 1800 1100 3600
 18 CHICAGO 2200 1300 700 2900
 19 LOSANGLS 3700 2400 2500 1100
 20
 21 ;
 22
 23 * DATA CALCULATION
 24
 25 PARAMETER COST(PLANT,MARKET) CALCULATED COST OF MOVING GOODS;
 26 COST(PLANT,MARKET) = 50 + 1 * DISTANCE(PLANT,MARKET);
 27
 28 * MODEL DEFINITION
 29
 30 POSITIVE VARIABLES
 31 SHIPMENTS(PLANT,MARKET) AMOUNT SHIPPED OVER A TRANSPORT ROUTE;
 32 VARIABLES
 33 TCOST TOTAL COST OF SHIPPING OVER ALL ROUTES;
 34 EQUATIONS
 35 TCOSTEQ TOTAL COST ACCOUNTING EQUATION
 36 SUPPLYEQ(PLANT) LIMIT ON SUPPLY AVAILABLE AT A PLANT
 37 DEMANDEQ(MARKET) MINIMUM REQUIREMENT AT A DEMAND MARKET;
 38
 39 TCOSTEQ.. TCOST =E=
 40 SUM((PLANT,MARKET), SHIPMENTS(PLANT,MARKET)*
 41 COST(PLANT,MARKET));
 42
 43 SUPPLYEQ(PLANT).. SUM(MARKET, SHIPMENTS(PLANT, MARKET))
 44 =L= SUPPLY(PLANT);
 45
 46 DEMANDEQ(MARKET).. SUM(PLANT, SHIPMENTS(PLANT, MARKET))
 47 =G= DEMAND(MARKET);

5-11

Table 5.1 (continued)

 48
 49 MODEL TRANSPORT /ALL/;
 50
 51 * MODEL SOLUTION
 52
 53 SOLVE TRANSPORT USING LP MINIMIZING TCOST;
 54
 55 * REPORT WRITING
 56
 57 PARAMETER MOVEMENT(*,*) COMMODITY MOVEMENT;
 58 MOVEMENT(PLANT,MARKET)=SHIPMENTS.L(PLANT,MARKET);
 59 MOVEMENT("TOTAL",MARKET)=SUM(PLANT,SHIPMENTS.L(PLANT,MARKET));
 60 MOVEMENT(PLANT,"TOTAL")=SUM(MARKET,SHIPMENTS.L(PLANT,MARKET));
 61 MOVEMENT("TOTAL","TOTAL")=SUM(MARKET,MOVEMENT("TOTAL",MARKET));
 62
 63 OPTION DECIMALS=0;
 64 DISPLAY MOVEMENT;
 65
 66 PARAMETER COSTS(*,*) COMMODITY MOVEMENT COSTS BY ROUTE;
 67 COSTS(PLANT,MARKET)=COST(PLANT,MARKET)*SHIPMENTS.L(PLANT,MARKET);
 68 COSTS("TOTAL",MARKET)
 69 =SUM(PLANT,COST(PLANT,MARKET)*SHIPMENTS.L(PLANT,MARKET));
 70 COSTS(PLANT,"TOTAL")
 71 =SUM(MARKET,COST(PLANT,MARKET)*SHIPMENTS.L(PLANT,MARKET));
 72 COSTS("TOTAL","TOTAL")=TCOST.L;
 73 OPTION DECIMALS=0;
 74 DISPLAY COSTS;
 75
 76 PARAMETER SUPPLYREP(PLANT,*) SUPPLY REPORT;
 77 SUPPLYREP(PLANT,"AVAILABLE")=SUPPLY(PLANT);
 78 SUPPLYREP(PLANT,"USED")=MOVEMENT(PLANT,"TOTAL");
 79 SUPPLYREP(PLANT,"MARGVALUE")=ABS(SUPPLYEQ.M(PLANT));
 80 OPTION DECIMALS=2;
 81 DISPLAY SUPPLYREP;
 82
 83 PARAMETER DEMANDREP(MARKET,*) DEMAND REPORT;
 84 DEMANDREP(MARKET,"REQUIRED")=DEMAND(MARKET);
 85 DEMANDREP(MARKET,"RECIEVED")=MOVEMENT("TOTAL",MARKET);
 86 DEMANDREP(MARKET,"MARGCOST")=ABS(DEMANDEQ.M(MARKET));
 87 OPTION DECIMALS=2;
 88 DISPLAY DEMANDREP;
 89
 90 PARAMETER CMOVEMENT(*,*) COSTS OF CHANGING COMMODITY MOVEMENT PATTERN;
 91 CMOVEMENT(PLANT,MARKET)=SHIPMENTS.M(PLANT,MARKET);
 92 OPTION DECIMALS=2;
 93 DISPLAY CMOVEMENT;

5-12

Table 5.2 Example Transport Model -- Larger Version

1 * DATA DEFINITION
 3 SETS PLANT PLANT LOCATIONS
 4 /NEWYORK , CHICAGO , LOSANGLS , BALTIMORE , WASHINGTON
 5 PHILADEL , LASVEGAS, RENO , SEATTLE , BOISE/
 6 MARKET DEMAND MARKETS
 7 /MIAMI, HOUSTON, MINEPLIS, PORTLAND,BOSTON/
 8
 9 PARAMETERS SUPPLY(PLANT) QUANTITY AVAILABLE AT EACH PLANT
 10 /NEWYORK 100, CHICAGO 75, LOSANGLS 90,
 11 BALTIMORE 80, WASHINGTON 70, PHILADEL 60,
 12 LASVEGAS 40, RENO 20, SEATTLE 55,
 13 BOISE 10/
 14 DEMAND(MARKET) QUANTITY REQUIRED BY DEMAND MARKET
 15 /MIAMI 100, HOUSTON 90,
 16 MINEPLIS 120, PORTLAND 90
 17 BOSTON 180/;
 18
 19 TABLE DISTANCE(PLANT,MARKET) DISTANCE FROM EACH PLANT TO EACH MARKET
 20
 21 MIAMI HOUSTON MINEPLIS PORTLAND BOSTON
 22 NEWYORK 1300 1800 1100 3600 150
 23 CHICAGO 2200 1300 700 2900 800
 24 LOSANGLS 3700 2400 2500 1100 3800
 25 BALTIMORE 1100 1600 1200 3700 350
 26 WASHINGTON 1050 1550 1200 3700 400
 27 PHILADEL 1200 1700 1150 3650 250
 28 LASVEGAS 3300 2100 2300 1300 3600
 29 RENO 3400 2200 2200 900 3400
 30 SEATTLE 3700 2500 1900 250 3500
 31 BOISE 3500 2200 1700 450 3300
 33 ;
 34
 35 * DATA CALCULATION
 36
 37 PARAMETER COST(PLANT,MARKET) CALCULATED COST OF MOVING GOODS;
 38 COST(PLANT,MARKET) = 50 + 1 * DISTANCE(PLANT,MARKET);
 39
 40 * MODEL DEFINITION
 41
 42 POSITIVE VARIABLES
 43 SHIPMENTS(PLANT,MARKET) AMOUNT SHIPPED OVER A TRANSPORT ROUTE;
 44 VARIABLES
 45 TCOST TOTAL COST OF SHIPPING OVER ALL ROUTES;
 46 EQUATIONS
 47 TCOSTEQ TOTAL COST ACCOUNTING EQUATION
 48 SUPPLYEQ(PLANT) LIMIT ON SUPPLY AVAILABLE AT A PLANT
 49 DEMANDEQ(MARKET) MINIMUM REQUIREMENT AT A DEMAND MARKET;
 50
 51 TCOSTEQ.. TCOST =E=
 52 SUM((PLANT,MARKET), SHIPMENTS(PLANT,MARKET)*
 53 COST(PLANT,MARKET));

Table 5.2 (continued)

54
 55 SUPPLYEQ(PLANT).. SUM(MARKET, SHIPMENTS(PLANT, MARKET))
 56 =L= SUPPLY(PLANT);
 57

5-13

 58 DEMANDEQ(MARKET).. SUM(PLANT, SHIPMENTS(PLANT, MARKET))
 59 =G= DEMAND(MARKET);
 61 MODEL TRANSPORT /ALL/;
 63 * MODEL SOLUTION
 64
 65 SOLVE TRANSPORT USING LP MINIMIZING TCOST;
 66
 67 * REPORT WRITING
 68
 69 PARAMETER MOVEMENT(*,*) COMMODITY MOVEMENT;
 70 MOVEMENT(PLANT,MARKET)=SHIPMENTS.L(PLANT,MARKET);
 71 MOVEMENT("TOTAL",MARKET)=SUM(PLANT,SHIPMENTS.L(PLANT,MARKET));
 72 MOVEMENT(PLANT,"TOTAL")=SUM(MARKET,SHIPMENTS.L(PLANT,MARKET));
 73 MOVEMENT("TOTAL","TOTAL")=SUM(MARKET,MOVEMENT("TOTAL",MARKET));
 74
 75 OPTION DECIMALS=0;
 76 DISPLAY MOVEMENT;
 77
 78 PARAMETER COSTS(*,*) COMMODITY MOVEMENT COSTS BY ROUTE;
 79 COSTS(PLANT,MARKET)=COST(PLANT,MARKET)*SHIPMENTS.L(PLANT,MARKET);
 80 COSTS("TOTAL",MARKET)
 81 =SUM(PLANT,COST(PLANT,MARKET)*SHIPMENTS.L(PLANT,MARKET));
 82 COSTS(PLANT,"TOTAL")
 83 =SUM(MARKET,COST(PLANT,MARKET)*SHIPMENTS.L(PLANT,MARKET));
 84 COSTS("TOTAL","TOTAL")=TCOST.L;
 85 OPTION DECIMALS=0;
 86 DISPLAY COSTS;
 87
 88 PARAMETER SUPPLYREP(PLANT,*) SUPPLY REPORT;
 89 SUPPLYREP(PLANT,"AVAILABLE")=SUPPLY(PLANT);
 90 SUPPLYREP(PLANT,"USED")=MOVEMENT(PLANT,"TOTAL");
 91 SUPPLYREP(PLANT,"MARGVALUE")=ABS(SUPPLYEQ.M(PLANT));
 92 OPTION DECIMALS=2;
 93 DISPLAY SUPPLYREP;
 94
 95 PARAMETER DEMANDREP(MARKET,*) DEMAND REPORT;
 96 DEMANDREP(MARKET,"REQUIRED")=DEMAND(MARKET);
 97 DEMANDREP(MARKET,"RECIEVED")=MOVEMENT("TOTAL",MARKET);
 98 DEMANDREP(MARKET,"MARGCOST")=ABS(DEMANDEQ.M(MARKET));
 99 OPTION DECIMALS=2;
 100 DISPLAY DEMANDREP;
 101
 102 PARAMETER CMOVEMENT(*,*) COSTS OF CHANGING COMMODITY MOVEMENT PATTERN;
 103 CMOVEMENT(PLANT,MARKET)=SHIPMENTS.M(PLANT,MARKET);
 104 OPTION DECIMALS=2;
 105 DISPLAY CMOVEMENT;

6-1

Chapter 6 Fixing Compilation Errors

The execution of a GAMS program passes through a number of stages, the first of which

is the compilation step. Users watching the execution of a program are sometimes dismayed to

get the message: COMPILATION ERRORS with the message indicating 42 errors. These

notes cover the process of finding and fixing GAMS compilation errors.

One note before launching into a discussion of compilation error repair. GAMS frequently

marks compilation problems in latter parts of the code that are not really errors but rather the

messages are caused by errors in the earlier code. We have seen cases where an omitted or extra

semicolon or parenthesis in otherwise perfectly coded GAMS programs have caused hundreds of

error messages. One should start fixing errors from the top and after fixing several errors, rerun

the compilation to find out if those repairs took to care of later marked errors. It is hardly ever

desirable to try to fix all errors pointed out in one pass.

6.1 Finding Errors

When the compilation errors message is found users should edit the .LST file and look for

the cause of the errors. Errors are marked by lines which begin with 4 asterisks (****). For

example one may find lines in the .LST file like the following

6 SET PERIODS TIME PERIODS /T1*T5/;
 7 ELAPSED ELAPSED TIME /1*12/

**** $140 $36
 8 PRODUCTS LIST OF PRODUCTS /WHEAT,STRAWBERR

**** $108

which indicates errors were found in the 7th and 8th lines of the input file.

The **** GAMS compilation error line contains information about the nature of the error.

Error messages are numbered and placed below the place in the line they were encountered and

begin with a $. In the example above error number 140 occurred in line 7 and was caused by

GAMS finding the word ELAPSED when it was looking for an instruction. In addition a number

6-2

36 error was caused by the second incidence of the word ELAPSED and a number 108 error

occurred in line 8 caused by the word OF. GAMS also includes a list of the error message

numbers encountered and a brief description of the error at the bottom of the .LST file. In the

case above we find the following at the bottom of the file:

Error Messages
 36 '=' or '..' operator expected - rest of statement ignored
108 Identifier too long
140 Unknown symbol .

One may cause message explanations to be included at the place of their occurrence by using the

JCL option ERRMSG=1 on DOS machines or ERRMSG 1 on UNIX machines in the GAMS call

as follows

GAMS MYMODEL ERRMSG=1

or by placing the command ERRMSG 1 in the gamsprm95.txt for windows95 machines, which

causes the default to be error message level one. That file has other names on other machine

types being called gamsprm95.txt on NT machines or gamsprmun.txt on UNIX machines.

6.2 The Elusive Properly Placed Semi Colon

What is wrong in the example above? The cause is probably the most common GAMS

error for new users -- the placement of semi colons. GAMS commands should be terminated with

a semi colon (;). However, commands can occupy more than one line. In the above case the

original input looked like the following.

SET PERIODS TIME PERIODS /T1*T5/;
 ELAPSED ELAPSED TIME /1*12/
 PRODUCTS LIST OF PRODUCTS /WHEAT,STRAWBERRY/

This SET command is meant to continue for several lines, but the semi colon at the end of

the first line terminates it. In turn, GAMS is looking for a command phrase in the second line and

6-3

does not recognize the word ELAPSED, so it says UNKNOWN SYMBOL. There are two

ways of fixing this. One may move the semi colon to the actual end of the SET declaration (i.e.,

the end of the third line) or one may enter the word SET on the second line and place a semicolon

at the end of the third line.

GAMS does not strictly require a semicolon at the end of each command. In particular

when the next line begins with one of the recognized GAMS keywords (SET, PARAMETER,

EQUATIONS etc.) then a semicolon is assumed. However, it is good practice to terminate all

commands with a semicolon. Certainly the lines before all calculations and equation specifications

(.. lines) must have a semicolon.

The example also points out another common occurrence. GAMS usually generates

multiple error messages as the consequence of a mistake. Once an error is encountered numerous

messages may appear as the compiler disqualifies all further usages of the item in question and/or

becomes confused. In the case above, subsequent references to the ELAPSED or PRODUCTS

sets would cause errors and the SOLVE statement would be disqualified. Thus, users should fix

the errors starting from the beginning and skip later errors if in doubt of their validity.

6.3 Common Errors

Many types of errors are possible in GAMS. We cannot cover each one. Thus, we list a

set of common errors as well as an indication of what types of GAMS error messages they cause.

6.3.1 Excess or insufficient semi colons - Error A

Too few or too many ;'s have been specified. This is discussed above. Normally this error

is associated with GAMS error message $140.

6.3.2 Spelling mistakes - Error B

Named sets, parameters, equations etc. may be referenced with an different spelling than in

6-4

their declaration (i.e., the set CROPS is later referred to as CROP). GAMS identifies set name

misspellings with message $120, set element misspellings with $170 and other misspellings with

$140.

6.3.3 Omitted SET elements - Error C

One can forget to include elements in set declarations. In turn when these elements are

referenced an error arises (i.e., an error would occur if CORN was omitted from the declaration

of set CROP but used when data were defined under the PARAMETER PRICE(CROP)). GAMS

identifies such errors with message $170.

6.3.4 Indexing problems - Error D

Parameters, variables, and equations are specified with a particular index order. Errors

can be made where one inadvertently alters that order in subsequent references (i.e., X(A,B,C) is

referred to as X(B,A,C). One can also use too many [(X(A,B,C,D)] or too few [(X(A,B)]

indices. Cases where the order of sets are changed are marked with messages $170 and 171.

Cases where more or less indices are used are marked with messages $148 and 149.

6.3.5 Summing over sets already indexed - Error E

Errors occur when one treats the same SET more than once [(i.e., I is summed over twice

in the expression SUM(I,Y(I) +SUM(I,Z(I)))] or where an equation is defined over a set and one

tries to sum over it [i.e., in the following two cases I and J define the equation and are summed

over X(I,J)=SUM((I,J),Y(I,J)); or EQN(I,J)..SUM((I,J),X(I,J))=10;] Such errors are marked

with message $125.

6.3.6 Neglecting to deal with sets - Error F

Errors occur when one does not sum or index over a SET referenced within an equation

(i.e., in the following cases K is used occurs but are not declared Z=SUM(I,Y(I,K)); or

6-5

EQN(I,J).. X(I,J,K)=10;] This is marked with message $149.

6.3.7 Mismatched parentheses - Error G

Parentheses must match up in expressions. An excess number of open "(" parentheses are

marked with $8 while excess closed ")" parentheses are marked with $12 and $36 [i.e., cases like

SUM (I,X(I); or SUM (I,X(I)));] generate errors.

Two error prevention strategies are possible when dealing with parentheses. First, many

editors, including in the one in the GAMS IDE program, contain a feature that allows one to ask

the program to identify the matching parentheses with respect to the parenthesis that is sitting

underneath the cursor. It is highly recommended that GAMS users employ this feature during

model coding to make sure that parentheses are properly located for the end of sums, if

statements, loops etc. Second, alternative characters can be used in place of parentheses. In

particular, the symbols { } or [] can be used instead of the conventional (). GAMS is

programmed to differentially recognize these symbols and generate compile errors if they do not

match up. Thus a statement such as

x = sum(j, ABS (TTS (j)));

can be restated as

x = sum[j, ABS { TTS(j) }];

Such a restatement would provide a visual basis for examining if the parentheses were properly

matched in the program. It would also generate errors if one did not use the alternative

parenthesis forms in the proper sequence. For example the following statement would stimulate

compiler errors:

x = sum[j, ABS { TTS(j}]);.

6-6

6.3.8 Improper equation ".." statements - Error H

Each declared equation must be specified with a statement which contains certain

elements. Omitting the ".." causes error $36. Omitting the equation type ("=L=", "=E=", or

"=G=") causes error $37. Omitting the specification of a declared equation is marked with

messages $71 and $256.

6.3.9 Entering improper nonlinear expressions - Error I

One get messages $51-$60 and $256 containing the word ENDOGENOUS when the

equations contain nonlinear terms beyond the capability of the solver being used (i.e., nonlinear

terms do not work in LP solvers)

6.3.10 Using undefined data - Error J

When data items are used which have not been declared (in a TABLE, PARAMETER or

SCALE statement) one gets error $140. In addition, when declared items are used which have

not received numerical values, one gets either: 1) message $141 when the items are used in

calculations, or 2) messages $66 and $256 when the items are used in model equations. One can

also get message $141 when referring to optimal levels of variables (i.e., X.L or X.M) when a

SOLVE has not been executed.

6.3.11 Improper references to individual set elements - Error K

Individual set elements are referenced by entering their name surrounded by quotes.

When the quotes are not entered one gets message $120 (i.e., if we have defined X(CROP) with

CORN as an element in CROP, then X(CORN) is wrong, but X("CORN") is right).

6.3.12 Omitting a variable, parameter, or equation definition - Error L

When a variable, parameter, or equation is used which has not been declared one gets

error $140

6-7

6.3.13 Duplicate names - Error M

Multiple declarations of items with the same name will cause message $150.

6.4 Common Error Cross Reference

Now are present a cross reference table between error messages in the discussion above

and the above common error causes. In using this table, readers should also look at the GAMS

error message text as it is may indicate additional causes.

6-8

 GAMS
Error Message

Potential Causes in
the Above Error Discussion Common Cause of Error

8 G Mismatched parentheses-too many "("found

12 G Mismatched parentheses-too many ")"found

36 G,H Missing elements in equation definition

37 H Missing equation type ("=L=" or "=E=" or "=G=" in
equation specification

51-60 I Illegal nonlinear specification

66 J Item which has not been given numerical data appears
in equation

71 H Equation has been declared, but not algebraically
specified with ".." statement

120 B, K Cannot find a set with this name -- often a set element
is referenced without properly being enclosed in "

125 E Set is already in use in a sum or an equation
definition

140 A, B, L GAMS looking for a keyword or declared element and
cannot find it. Check spelling and declarations. Also
look for missing ;

141 J Parameter without data used, or SOLVE does not
proceed .L, and .M references

148 D Item referenced with more or less indexed sets than in
declaration

149 D, F The set identified is not indexed either in a sum or an
equation definition

150 M Name used here duplicates that of an already defined
item

170 B, C, D Set element referred to cannot be found in set defined
for this index position

171 D Wrong set being referenced for this index position

256 H, I, J Something wrong with model specification. Look for
other error messages immediately after solve
statement

257 A-M Happens in conjunction with any GAMS error

1The entry below indicates when one gets error 8 the case is commonly that discussed under common

error G above.

7-1

Chapter 7 Fixing Execution Errors

During GAMS usage one can encounter execution errors. Generally these occur either during

calculation, during model generation or during model solution. Here we cover all three.

7.1 Execution Errors During Model Generation

Execution errors during model generation can either be calculation errors or model structure

errors. Calculation errors are numerically based and can be caused by such diverse occurrences as

improper exponentiation (such as raising a negative number to a real power), taking logs of negative

numbers and dividing by zero. Model structure errors may occur if the equations are set up improperly

or if the wrong solver is being used.

Discovery of execution errors is sometimes very straight forward and can at other times be fairly

involved. In particular, when an error occurs in the middle of a multi-dimensional equation block and/or

in a multi-dimensional equation term within a block, one can have difficulties finding the cause. The

most practical way of finding such errors is to use the LIMROW/LIMCOL option commands.

Let us illustrate these procedures with an example. Suppose we have a GAMS input stream

(Table 7.1) where we have a term with 25 elements in the objective function and 25 constraints. In this

example we have execution errors: a) in the objective function term for the “S20" element where we

are exponentiating a negative constant to a power (because of the assignment in line 9); b) in the XLIM

constraint associated with element “S21" where we are dividing by zero (because of the assignment in

line 11); and c) in the XLIM “S22" constraint where we set zero equal to one which results in an

infeasible constraint (because of the assignment in line 15). When we run this small GAMS model, one

sees the execution messages as follows:

---Starting compilation

7-2

---EXECUTMD (31)
---Starting execution
---EXECUTMD (29)
---Generating model EXECUTERR
---EXECUTMD (31) 3 Errors
***Execution error(s)

Notice this output says three execution errors were encountered. The LST file contains the further

information as below.

***EXECUTION ERROR 10 AT LINE 23..ILLEGAL ARGUMENTS IN ** OPERATION
***EXECUTION ERROR 0 AT LINE 24..DIVISION BY ZERO
***EXECUTION ERROR 28 AT LINE 24..EQUATION INFEASIBLE DUE TO RHS
***INFEASIBLE EQUATIONS...
----XLIM =E= constraints with bad division

XLIM (S22).. 0 =E= 1 ; (LHS = 0 ***)

The first line shows an exponentiation error occurs somewhere in line 23 which defines the objective

function equation. The second two messages show numerical and equation structure problems in line

24.

We may easily solve the problem with respect to the infeasible equations since, in the above LST

file messages, GAMS tells exactly where the problem occurs and one can go review the data for that

specific term and eliminate the problem by removing the code in the GAMS input file line 15. On the

other hand, the problem involving the objective function and the zero division in line 24 are not as easily

found. Neither error occurs for all cases, i.e, we are not dividing by zero everywhere, so we need to

know the specific elements in which the error occurs. We find this by setting LIMROW/LIMCOL to

larger values. If we run with the default LIMROW value of three, while removing the error caused by

line 15, we would find an undefined term in the objective function for item S20 (See Table 7.2), but we

do not find the location of the constraint flaw. Thus, we need to make LIMROW bigger. In this

particular case LIMROW has to be as great as 22 so that it reveals undefined terms in the equation with

the faulty division. Information abstracted from the output with LIMROW = 25 is presented in Table

7-3

7.2. Here notice in the objective function equation for S20 we have a term listed as UNDF (undefined).

This is the term where the zero exponentiation fault occurs. Also, notice in the equations we have an

indication of the division by zero in the XLIM constraint in that there are undefined terms for

XLIM(S21). We could then proceed to examine and fix the associated data.

7.2 Finding Execution Errors in Calculations

During modeling one can also receive an execution error message for undefined terms in

calculations. For example, consider the input in Table 7.3 where we cause an exponentiation fault for

the S21 element and a division fault for the S22 element. In that particular case when we run this we

get the execution report below.

--- Starting compilation
--- EXECUTCL (21)
--- Starting execution
--- EXECUTCL (20) 2 Errors
** Execution error (s)
--- Erasing scratch files

 The .LST file contains the following error message

**** EXECUTION ERROR 10 AT LINE 18 .. ILLEGAL ARGUMENTS IN ** OPERATION.

Such error may be readily fixed or one may need to display the calculated data to find wherein the array

this is occurring (Table 7.4). The resultant display shows the undefined elements are associated with

S20 and S21. We could then find our problem.

There is a quite confusing error which can occur during GAMS execution. That involves the

square of a slight negative number. In particular, consider the example in the file solvesq. Here the

program executes perfectly for the first solve in the loop, but generates an execution error during the

second solve generating the message

**** EXECUTION ERROR 10 AT LINE 70 .. ILLEGAL ARGUMENTS IN ** OPERATION

7-4

where line 70 is as follows

 70 VAR = SUM(EVENTS,(RETURN.l(EVENTS)-MEAN.l)**2)/CARD(EVENTS);

The problem is the return.l variable for some events is very close to the optimal level of mean.l. In fact,

mean.l is ever so slightly larger. Thus GAMS has to square a very small negative number. Apparently

in such a case the arithmetic processor called by GAMS cannot square the small negative and signifies

an error. This unfortunately is a quite common occurrence in mean variance models. The only strategy

the author has found is to rewrite line 70 in the following form:

70 VAR = SUM(EVENTS,(RETURN.l(EVENTS)-MEAN.l)*(RETURN.l(EVENTS)-MEAN.l))/CARD(EVENTS);

where the net effect is that we have eliminated the **2 term by completing the square.

7.3 Summary Procedure for Finding Execution Errors

One should follow the following steps

a) Observe the execution error message in the screen output.

b) Examine the list file for further information.

c) Look for messages starting with “***”. Take note of the line numbers in the code where

the errors occur.

d) Look up the statements in those line numbers. Now if the statement that is identified as

an calculation statement within the program as opposed to a constraint “..” expression,

then first examine whether the conditional i.e. $ should be imposed to avoid allowing

zeros in the divisors, negative numbers into exponentiations or logs, etc. One does not

feel that this should uniformly be the case and one wonders where the zero or the

negative is coming from then immediately after the faulty statement insert a display

statement for the item being calculated. In Table 7.3 in line 18 we find some difficulties

in the display statement, and line 20 will display the results. In turn then, examine the

7-5

result and output and look for incidences of the word UNDF which indicates what

elements the undefined terms are in and then look at the numerical items that go into

those terms. This may imply one has to display the input items to the equation, i.e. in

Table 7.3 line 18 we might want to display data 1 and DATADIV and examine the items

for S20 and S21 which are identified in Table 7.4 as the two undefined items.

e) If on the other hand, the division fault is in an equation, then again examine for where the

$ notation should be imposed to prevent zero divisions and negative exponentiations or

use some combination of display statements to look at the included data in the equation

and bigger use of LIMROW to know what is going into the equation. Third, if equations

are identified as infeasible then examine those cases and again are resolved infeasibility or

look at the data coming into those equations and inquire as to whether $ are needed to

prevent those equations form being generated.

f) Watch out for the GAMS square/exponentiation error. In particular, when the

formulation involves a squared term or exponentiation to a whole power, consider

writing out the term in multiplication format or somehow rearrange terms so that the

possibility of exponentially aiding a negative number is eliminated. This may also involve

the provision of non-zero starting points as for example when lower and upper bounds

are not provided, then GAMS uses starting point of zero for the variables. One may also

need to provide bounds for the solution process to keep the variable away from 0 by

lower bounding any variables which give problems if they equal zero to be above a

number greater than the feasibility tolerance. This would insure that GAMS for example

does not divide by a zero to in setting up the starting version of the problem.

7.3 Execution Errors During Model Solution

7-6

Execution errors during model solution are generally calculation errors or problems caused by a

presolve. Calculation errors are numerically based and can be caused by such diverse occurrences as

improper exponentiation (such as raising a negative value of a variable to a real power), taking logs of

negative variables, squaring a negative term and dividing by zero. Presolve errors may indicate

infeasibility or unboundedness and may also be caused by an overzealous presolve which eliminates the

problem for all practical purposes. Both presolve and calculation induced errors will be discussed

below.

7.3.1 Calculation Based Execution Errors During Model Solution

Execution errors can occur during problem solution. In particular, if the GAMS problem is

nonlinear and some variables may be zero (or negative) which are exponentiated then the solver can

stop on an execution error. Two examples of this are provided in the example problems.

In the problem solvelog.gms the objective function is optimized at a variable approaching zero

where that value is logged. Running this problem through MINOS5 yields the error message

EXIT -- Termination requested by User in subroutine FUNOBJ

The use of CONOPT leads to message:

 ** Domain error(s) in nonlinear functions.
 Check bounds on variables.

Both packages also cause GAMS to include the following message in the listing file:

**** ERRORS(S) IN EQUATION R1

1 INSTANCE OF - UNDEFINED LOG OPERATION (RETURNED -0.1E+05)

Similarly the solution of the problem solvediv.gms causes equivalent error messages coming to the

screen from the solvers and in the listing file the message:

**** ERRORS(S) IN EQUATION R1
 1 INSTANCE OF - DIVISION BY ZERO (RESULT SET TO 0.1E+05)

7-7

Other numerical cases causing solver failure would generate similar messages either involving

data domain problems, or improper calculations in functions.

7.3.1.1 Solver calculation error cause discovery and repair strategies

Suppose we find that our model causes the solver to fail for numerical problems. The resultant

GAMS identification of problematic calculations in equation terms may not tell the user where the

problem is when the equation is complex. Thus one may need to investigate within the structure of the

equations to discover exactly which variable in which term is causing problems. We recommend

following an approach like used under the calculation and generation execution error discovery sections

earlier in this manuscript. Namely you could resolve with LIMROW large and look for UNDF terms.

You could also set up the calculations of the terms in an equation in a report writing model using the

variable level values and display them in turn looking for terms that were marked with UNDF.

Once the cause has been found there are two repair strategies: equation reformatting and

variable bounding. Equation reformatting involves investigating whether the equation is properly

specified and if not manipulating it into proper form. For example a division sign may have been typed

instead of a minus bound the variable away from zero by placing for example a lower bound of 0.001 or

some other small positive number which is greater than the feasibility tolerance. One may also be able

to manipulate the equation to avoid problems i.e. logging a variable + 0.001 or dividing by the same if it

does not do damage to the practical results of the formulation.

Provision of a starting point is also another powerful problem avoidance technique. In the

absence of a starting point, GAMS chooses one somewhere between the lower and upper bounds. But

when bounds are not specified GAMS generally uses a starting value of zero for non negative variables.

Provision of non-zero starting point is done by using command of the form:

7-8

x.l=k;

where k is the staring point. Starting points may cause the solver to start some distance from the

problematic variable values and avoid execution errors

7.3.2 Presolve Based Execution Errors During Model Solution

Yet another place where solvers can run in a errors is during presolves. There are three

circumstances where we have seen errors arise.

First, the presolve can, in relatively simple problems, essentially eliminate the problem and

terminate with an error condition. This generally occurs because presolves commonly substitute away

bounds and equality constraints to simplify the problem and may in effect simplify the problem out of

existence. Second, a pre-solve may detect the problem is unbounded or infeasible and terminate. Third,

in mixed in programming problems, the presolve may discover that there is no feasible integer solution

and terminate. In all cases the solution returned to GAMS is generally unusual.

Consider an example. Suppose we solve the problem (presol1.gms) below

1 variables z;
 2 positive variables y1,y2;
 3 equations r1,r2,r3,r4;
 4 r1.. z=e=y1+y2;
 5 r2.. y1=l=10;
 6 r3.. y2=l=10;
 7 r4.. y1+y2=e=10;
 8 model badpresol /all/
 9 option lp=osl;
 10 solve badpresol using lp maximizing z;

The solution listing reports

**** SOLVER STATUS ERROR SOLVER FAILURE
**** MODEL STATUS 6 INTERMEDIATE INFEASIBLE

and later we see

**** PRESOLVE has deleted all rows

In this case, what has happened is the OSL presolve has eliminated constraints r2 and r3 and

7-9

made them into simple upper bounds. Also constraint r4 has been manipulated to express y1 in terms

of y2 and y1 has been substituted out of the problem. In turn the resultant model is a linear program

with one variable and no explicit constraints but with a upper bound. When that resultant model is

passed on to the OSL linear programming solver it cannot function (as LP problems must have

constraints) so it terminates. In turn it tells GAMS the model is infeasible although it also causes the

LST file to contain to message was the presolve eliminated all constraints. One would have to suppress

the presolve to adequately get OSL to solve the model. A similar trial was tried using CPLEX. Under

those circumstances the solver could function and return an optimal solution.

Yet another trial was tried out to see what would happen with mixed integer programming

problems which did not have a feasible integer solution. The example model in this case follows

 1 variables z;
 2 integer variables y1,y2;
 3 equations r1,r2,r3,r4;
 4 r1.. z=e=y1+y2;
 5 r2.. y1=g=0.10;
 6 r3.. y2=g=0.10;
 7 r4.. y1+y2=l=1;
 8 model badpresol /all/
 9 option mip=cplex;
 10 solve badpresol using mip maximizing z;

Solving this problem with CPLEX yielded the solution messages

**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 10 INTEGER INFEASIBLE

followed by

Presolve found the problem infeasible or unbounded.
Turning all presolve options off before rerun.
Problem is integer infeasible.

The OSL solver presolve did not discover problems.

7-10

In these cases, one needs to investigate the listing to find the messages from the presolve

processor to see what happened. One may need to suppress the presolve to use other techniques

(GAMSCHK etc) to discover the difficulty. More material on presolves and solver terminations

appears in chapter 8.

7-11

Table 7.1. GAMS Input with Model Generation Errors

2 sets elements /s1*s25/
 3
 4 parameter data1(elements) data to be exponentiated
 5 datadiv(elements) divisors
 6 datamult(elements) x limits;
 7
 8 data1(elements)=1;
 9 data1("s20")=-1;
 10
 11 datadiv(elements)=1;
 12 datadiv("s21")=0;
 13
 14 datamult(elements)=1;
 15 datamult("s22")=0;
 16
 17 positive variables x(elements) variables
 18 variables obj;
 19
 20 equations objr objective with bad exponentiation

21 xlim(elements) constraints with bad divisor;
22

 23 objr.. obj=e=sum(elements,data1(elements)**2*x(elements));
24 xlim(elements).. datamult(elements)/datadiv(elements)*x(elements)=e=1;

 25
 26 model executerr /all/

27
 28 option limrow=0;
 29 option limcol=0;
 30
 31 solve executerr using lp maximizing obj;

7-12

Table 7.2. GAMS LST File for Model With Generation Errors

**** EXECUTION ERROR 10 AT LINE 23 .. ILLEGAL ARGUMENTS IN ** OPERATION

---- OBJR =E= objective with bad exponentiation
OBJR.. - X(S1) - X(S2) - X(S3) - X(S4) - X(S5) - X(S6) - X(S7) - X(S8)
 - X(S9) - X(S10) - X(S11) - X(S12) - X(S13) - X(S14) - X(S15) - X(S16)
 - X(S17) - X(S18) - X(S19) + UNDF*X(S20) - X(S21) - X(S22) - X(S23)
 - X(S24) - X(S25) + OBJ =E= UNDF ; (LHS = UNDF ***)

**** EXECUTION ERROR 0 AT LINE 24 .. DIVISION BY ZERO

---- XLIM =E= constraints with bad divisor
XLIM(S1).. X(S1) =E= 1 ; (LHS = 0 ***)
XLIM(S2).. X(S2) =E= 1 ; (LHS = 0 ***)
...
XLIM(S20).. X(S20) =E= 1 ; (LHS = 0 ***)
XLIM(S21).. UNDF*X(S21) =E= UNDF ; (LHS = UNDF ***)
XLIM(S22).. X(S22) =E= 1 ; (LHS = 0 ***)

aNote to replicate this output you have to modify the file in Table 7.1 by putting an asterisk in column 1
of line 15 and changing LIMROW to 25 in line 28.

7-13

Table 7.3 Example with Execution Errors in Calculations

 2 sets elements /s1*s25/
 3 parameter data1(elements) data to be exponentiated
 4 datadiv(elements) divisors
 5 datamult(elements) x limits;
 6
 7 data1(elements)=1;
 8 data1("s20")=-1;
 9
 10 datadiv(elements)=1;
 11 datadiv("s21")=0;
 12
 13 datamult(elements)=1;
 14 datamult("s22")=0;
 15
 16 parameter result(elements);
 17
 18 result(elements)=data1(elements)**2.1/datadiv(elements);
 19
 20 display result;
 21

7-14

Table 7.4 LST file for Model Calculation Execution Error Example.

**** EXECUTION ERROR 0 AT LINE 18 .. DIVISION BY ZERO

---- 20 PARAMETER RESULT

S1 1.000, S2 1.000, S3 1.000, S4 1.000, S5 1.000, S6 1.000
S7 1.000, S8 1.000, S9 1.000, S10 1.000, S11 1.000, S12 1.000
S13 1.000, S14 1.000, S15 1.000, S16 1.000, S17 1.000, S18 1.000
S19 1.000, S20 UNDF, S21 UNDF, S22 1.000, S23 1.000, S24 1.000
S25 1.000

8-1

Chapter 8. Presolution Diagnosis and Structural Problem Repair

Modelers often face the situation where a GAMS model successfully compiles but delivers an

improper answer. Models can be set up which solvers report back as infeasible or unbounded. Worse

yet solutions can be optimal, but unrealistic. Typically such failures are caused by omissions,

implementation errors in equation structure and/or faulty calculations. Here we discuss checking model

structure before solving. The next chapter covers post solution checking.

Presolution checking can be done manually or by computer. There are three types of

computerized presolution analysis techniques that may be used with GAMS. Those are the ones

included inside GAMS, those inside the GAMS solvers, and those that can be used using GAMSCHK

(McCarl). One may also use a GAMS compatible version of ANALYZE (Greenberg) but this will not

be described herein.

In presenting this material, note that we are not trying to teach modeling. Generally, models fail

either because the modeler has not properly implemented the conceptional model or because the

conceptual model is fundamentally flawed. In this book we are addressing the first, rather than the

second cause. Readers wishing treatment of how to set up conceptual models should review modeling

books such as Williams; McCarl and Spreen; Bradley, Hax, and Magnanti; or Wagner; Hillier and

Lieberman.

8.1 Adopting an Example

Our discussion will be facilitated by the use of a common example model. This model depicts a

multi-plant, furniture producing, firm which makes tables and chairs in turn selling dining sets. There

are two qualities of furniture that are made: fancy and functional. In furniture production, the firm uses

small and large lathes, carvers, labor and a table top fitter. The production processes which can be

used are: a) the normal process; b) a process using the maximum amount of the large lathe; and c) one

8-2

using maximum small lathe time. The model also depicts transportation where the tables or chairs

produced at a plant can be shipped to other plants. The GAMS formulation is in Table 8.1, and a

tableau in Figure 8.1.

The above example is well formed and is not particularly good for the discussion of finding out

when things are drastically wrong. As a consequence we make several modifications to thoroughly

mess the model up. In particular, referencing the model in Table 8.1, we will

a) change the objective function sign of the transportation cost term in line 96
b) remove the conditions based on the ACTIVITY parameter which tells whether a plant

makes a product by commenting the $ term out in lines 94, 103 and 117
c) drop the condition on nonzero transport costs in lines 97, 110 and 113
d) drop the coefficient indicating term that inventory on hand is used when transporting

goods out from a plant by zeroing the term starting in line 109
e) change the resource endowments to negative numbers by placing a minus in front of the

coefficient in line 106

The consequent model is listed in Table 8.2. This model is both infeasible and unbounded and will be

used to show the function of a number of the model structure checks.

8.2 Examining Model Structure Within GAMS

GAMS directly checks or allows checks of model structure through: a) the GAMS internal

checks for obvious model structural flaws; b) use of the LIMROW/LIMCOL options to display

structural features; or c) computation of matrix coefficients into parameters and formula based analyses

of those data or displays thereof.

8.2.1 GAMS Internal Structural Checks

As illustrated in the Chapter 7 execution errors section, GAMS checks the model as it is

generated for proper model structure. The internal checks are limited in scope and consist of

examination of whether an upper bound for a variable is less than the lower bound or whether a empty

equation is set equal to a nonzero constant. These are flagged as execution errors. Finding, interpreting

8-3

and dealing with messages indicating such errors is discussed in Chapter 7.

8.2.2 Using LIMROW and LIMCOL to Look at a Model

Users can examine empirical model structure using the GAMS LIMROW and LIMCOL options.

In particular, one can set the LIMROW and LIMCOL parameters large enough so that the LST file

includes the target variables and/or equations. For our example model, suppose we set LIMROW equal

to two and LIMCOL equal to three. In that case, we get the output in Table 8.3. This portrays the first

two equations in each equation block skipping the rest. Similarly, the first three variables are listed for

each variable block. Now suppose we look for flaws. Note, in Table 8.3 the resource equations are

flawed since a sum of positive coefficients times non negative variables is required to be less than or

equal to a negative RHS. In addition, in the variable listing the TRNSPORT variables can be seen to be

revenue producing in the objective function but do not use inventory.

Unfortunately, LIMROW or LIMCOL are crude model diagnosis tools. They generate a lot of

output. But, that output is not always complete so needed items may not appear. In particular, if the

equation or variable desired contains a lot of cases then either a large value of LIMROW/LIMCOL is

needed or careful item ordering must be employed so that the desired items appear first.

The ordering of LIMROW/LIMCOL displays merits further discussion. GAMS orders that

output in accordance with the order in which the set definition of the item is defined as well as the

ordering of set members and variable/equation declarations. First, let us look at the effects of set

membership ordering. Suppose we alter the order of the PLANT set in line 16 so that PLANT2 appears

before PLANT1. In this case Table 8.4 gives the resultant LIMROW output where PLANT2 data

appears first with PLANT1 data omitted. All displays involving the PLANT set will now have elements

associated with PLANT2 appearing first. Similarly, the ordering of the equations as they appear in the

LIMROW output depends on the order they are listed in the EQUATIONS declaration. For example,

8-4

suppose we modify lines 86-88 so rather than listing the OBJT row first we list PLANTPROD first. In

turn in the output the PLANTPROD elements would appear first. In general, in the

LIMROW/LIMCOL displays the output is ordered according to the following rules:

1) The equation and variable blocks are ordered according to their order of appearance in
the model declarations. Thus, if items are desired in a particular order, then alter the
variable and equation definition order (as in lines 80-88).

2) The sets indexing the equations and variables, control the order in which entries in a
block are output. Suppose we have an item like the MAKE variable block in the
example which has four indexing sets(X(I,J,K,L)). In that case the display will first vary
the fourth subscript then the third, second, and first. Thus if one wishes to see cases of
the second subscript (J) together then alter the item definition in the model so the 2nd

subscript is in the fourth location(X(I,K,L,J)).

3) When a set is referenced the order in which the set elements appear is determined by the
order in which they are listed in the set statements with one proviso as discussed below.
Thus, if a set contains the words PLANT1, PLANT2 then all elements involving
PLANT1 will be listed before those for PLANT2.

4) The exact order in which set elements are listed is not always controlled by the set
definitions. The real controlling factor is the order in which unique set element names
appear. In the example, if the word PLANT2 was interjected in the PRODUCT set, then
regardless of the element order in the PLANT set, PLANT2 would always be listed first,
since the PLANT2 set element name was seen first. The best strategy to use is to use
unique set element names so that one always gets the proper order. Equivalently, one
could also make sure the PLANT1 name was seen before the PLANT2 name in the
program.

By reordering the variable and equation names as well as the set member ordering one can

control the elements that appear first. For example, note how the reordering of the PLANT set in line

16, altered the listing order in Table 8-4 when compared to Table 8-3.

The LIMROW/LIMCOL options are rather blunt instruments when it comes to model structural

examination. In a model with 10 equation and variable blocks an examination of one element from each

block would require generation of at least 10 times as much information. Further, for large models

where a particular equation falls in say the 500th case for an equation block it is easy to generate many

8-5

megabytes of LST file. A few quests for a model structural difficulties needed in this huge hay stack of

information shows both the desirability of the chapter five SMALL TO LARGE argument and the

desirability of a more pointed instrument such as DISPLAYCR in GAMSCHK.

8.2.3 Data Calculation Based Structural Checks

One may also examine structure by crafting special calculations. Suppose a user wished to

examine a submatrix of model coefficients. For example, suppose we wished to examine the

production/resource part of the model that we wish to do a test for cases where we potentially have

production without any resource usage. We would implement this by inserting the GAMS statements in

Table 8.4 after line 122. In this particular case we set up a parameter (AMATRIX) which has the

dimension of the MAKE variables for the last four dimensions, and the dimensions of the RESOURCE

equations for the first two. In turn, we compute AMATRIX just as the RESOURCE equations are

computed and display it. An example of this is found in of Table 8.5 with the output in Table 8.6.

Notice this allows us to review of the calculation of each of the numbers in this matrix and make sure

they are appropriate and would allow much more complex calculations to be portrayed. We also

introduce in lines 129-132 a computation of cases where we have missing A matrix elements for the

model. In this particular case we see if for a particular furniture item type and method where there is

some resource use and if there is none (i.e. resource use is less than or equal to zero) we set the

parameter BADAMATRIX equal to 1 and in turn display. This display appears in Table 8.6 and shows

that for PLANT2 we are missing data for normal production of Tables and for both plants we are

missing data for the maximum small and large lathe production of tables. (However, we should expect

this because we didn’t define any data so this may not be a case where there is a bad setup for our

problem). This is indicative of a more general approach when one wants to examine a submatrix one

8-6

one can compute the coefficients for that submatrix into an internal GAMS array and then display that

array and examine what the matrix looks like and if desirable compute items based on conditions about

whether the coefficients are appropriate.

8.2.3 Data Calculation Based Structural Checks

One may also examine structure by crafting special calculations. Suppose a user wished to

examine a submatrix of model coefficients. For example, suppose we wished to examine the

production/resource part of the model that we wish to do a test for cases where we potentially have

production without any resource usage. We would implement this by inserting the GAMS statements in

Table 8.2 after line 122. In this particular case we set up a parameter (AMATRIX) which has the

dimension of the MAKE variables for the last four dimensions, and the dimensions of the RESOURCE

equations for the first two. In turn, we compute AMATRIX just as the RESOURCE equations are

computed and display it. An example of this is found in of Table 8.5 with the output in Table 8.6.

Notice this allows us to review of the calculation of each of the numbers in this matrix and make sure

they are appropriate and would allow much more complex calculations to be portrayed. We also

introduce in lines 129-132 a computation of cases where we have missing A matrix elements for the

model. In this particular case we see if for a particular furniture item type and method where there is

some resource use and if there is none (i.e. resource use is less than or equal to zero) we set the

parameter BADAMATRIX equal to 1 and in turn display. This display appears in Table 8.6 and shows

that for PLANT2 we are missing data for normal production of Tables and for both plants we are

missing data for the maximum small and large lathe production of tables. (However, we should expect

this because we didn’t define any data so this may not be a case where there is a bad setup for our

problem). This is indicative of a more general approach when one wants to examine a submatrix one

8-7

one can compute the coefficients for that submatrix into an internal GAMS array and then display that

array and examine what the matrix looks like and if desirable compute items based on conditions about

whether the coefficients are appropriate.

8.3 Examining Structure With Solver Features

Some of the solvers accessible through GAMS have modules designed to improve solver

performance which try to simplify problems before a solution process is applied. These modules are

called presolves and are resident in at least OSL and CPLEX. These features are described in the solver

manuals that are distributed when one buys solvers and in discussions such as those in Leunberger.

These features are automatic and generally should be used. On the other hand they are not always

desirable and may need to be suppressed.

A presolve tries to reduce solution time by making the problem simpler. This is done by

automatically reformulating the problem removing variables and constraints, converting constraints on

single variables into bounds and tightening bounds on integer variables along with other procedures. In

the process of doing this presolves can find the problem is infeasible or unbounded. Such structural

checks are free "byproducts" of the presolver which can help with diagnosing problems in a model,

although they are not a consistent source of aid but something that happens on occasion which can be

useful.

 Potential presolve users should be aware of one aspect of their design which may cause

misleading results.. In particular, most presolves do not use tolerances. Thus, if a presolve finds a

constraint is infeasible by ten to the minus 30th, it will call that constraint infeasible even though the

constraint may really be feasible and round off error is causing the infeasibility conclusion. Thus if a

presolve has declared a model infeasible or unbounded it may be advantageous to suppress the presolve

8-8

and submit the problem to the solver anyhow.

The results of these presolve procedures is best illustrated by example. The above thoroughly

messed up problem (Table 8.2) was run through OSL, CPLEX, MINOS5 and BDMLP.

8.3.1 CPLEX

When the default version of CPLEX (where PRESOLVE is active) was run, GAMS aborted

with errors as reflected in the output abstracted in Table 8.7, Panel A. This output shows the CPLEX

presolve found a problem (i.e., stat is “No Solution Exists”) but the LST file does not give us any

further meaningful information. This is not entirely unsurprising since CPLEX PRESOLVE is not

designed for model diagnosis but rather for quickly finding out if a model is flawed. Nevertheless,

experience indicates that the CPLEX PRESOLVE is of little use in finding infeasibilities and should be

suppressed in such cases.

In turn CPLEX was run with PRESOLVE suppressed yielding the output abstracted in Table

8.7, Panel B. This shows there are infeasible rows in the RESOUREQ equations, as indicated by the

INFES marks.

CPLEX also allows us to run with the IIS feature which generates an “irreducible infeasible set.”

In this case we get the output in Table 8.7, Panel C which in turn is followed by solver output like that

in Panel B. The Panel C output identifies the interaction between some of the RESOUREQ equations

and the MAKE variables as an infeasibility cause.

8.3.2 OSL

The OSL PRESOLVE was more informative. As shown in Table 8.8, Panel A, OSL

PRESOLVE showed infeasibilities and listed the involved equations/variables. Running with the OSL

PRESOLVE suppressed generated the information in Panel B which is essentially identical to the

8-9

CPLEX output in Table 8.7, Panel B.

8.3.3 Solvers without Presolve or with Presolve Suppressed

When one uses most solvers without presolves or suppresses presolve a common type of output

arises. In such a case we get output like that given by CPLEX or OSL without the PRESOLVE as

abstracted in Panel B of Tables 8.7 and 8.8. This output contains an identification of items which

cannot be made feasible denoted by the flag INFES in the LST file. Note however differing items were

marked INFES (some of the MAKE variables were included by the other solvers).

8.3.4 An Unbounded Example

We also ran an unbounded model through the solvers. This was done by taking the model in

Table 8.1 with the modification in line 109 in Table 8.2. When we remove the requirement that we need

to withdraw supply when transporting allowing a cheap supply of goods. In turn all the solvers

reported an unbounded solution containing .LST file elements such as abstracted in Table 8.9. The

code UNBND identifies the particular variable that was found to be unbounded. The variable marked

UNBND differed across solvers. In some cases the solver identified the TRANSPORT variables and

other cases the SELL variables. Both are unbounded under the modification that we made. The NOPT

indicator is also relevant as it shows other variables which are not yet optimal in terms of their reduced

costs and may be unbounded.

8.3.5 Solver Summary

When using GAMS there are cases where the solvers can detect a problem and identify where it

has occurred. Unfortunately, the location is not always identified. Generally the solvers do a better job

in terms of identifying sources of infeasibilities than they do unboundedness. CPLEX also accurately

identifies a set of the infeasibilities when the presolve is suppressed and the IIS option used. We

8-10

recommend reliance only on the IIS finder for infeasibility detection. Generally, we feel modelers will

be able to more easily find of problems using GAMSCHK as discussed in the next section and the post

solution approaches in the next chapter. This is not surprising as the solvers are fundamentally designed

to solve, not do structural checking.

8.4 Presolution Structural Checking with GAMSCHK

 Presolution structural checking within GAMS and the GAMS solvers is not always effective.

All structural information is contained in the LIMROW/ LIMCOL output, but may require sifting

through a large amount of output. Similarly, solver information is almost always partial and often

inaccurate. GAMSCHK is designed to assist in presolution structural examination of models.

GAMSCHK contains several different types of procedures for presolution analysis. In particular

one may have GAMSCHK:

a) check the structure of the model for obvious structural flaws (using ANALYSIS).

b) create a schematic of the model matrix (using PICTURE)

c) generate a more aggregate variable and equation level block schematic coupled with

structural checks (using BLOCKPIC).

d) list equation and variable block characteristics and perform a block level structural check

(using BLOCKLIST).

e) display selected equation and/or variables (using DISPLAYCR).

f) portray aggregate characteristics of variables and equations (using MATCHIT)

These functions will be illustrated below.

8.4.1 Using Analysis

Probably 90% of the GAMS models that are initially infeasible, unbounded or yield strange

8-11

Max cX

aX # b

X$ 0

solutions are that way because of inadvertent errors in algebraic structure and/or data calculations.

Simple checks can be applied to examine a model for such mistakes. Suppose we have the following

model with one constraint and one variable:

where c, a, and b are exogenous scalars. If c is negative while a and b are positive then X must be zero.

More generally, if a maximization model contains a nonnegative variable with a negative objective

coefficient and all positive resource usages in less than or equal to constraints then the optimum variable

value will be zero. Similarly, if c is positive but a is negative the problem is unbounded and if a is

positive but b negative the problem is infeasible. This is suggestive of a set of model structural checks.

Table 8.10,11 give a set of checks considering additional variable sign restrictions and constraint types.

Checks can also be implemented based on bounds. In particular given the constraint a X bij j i≤∑
i

this constraint will be infeasible if where Lbj and Ubj are lower anda Lb a Ub bij j ij j i

j a j aij ij∈ ∈
∑ ∑+ ≥

f p0 0

upper bounds for Xj infeasible. Table 8.12 gives additional checks in this manner.

These checks have been implemented in the GAMSCHK ANALYSIS module. ANALYSIS

checks an empirical GAMS model for the presence of cases in the Tables. For example, when the

messed up model ir run through ANALYSIS, the output in Table 8.13 arises. This output identifies

that: a) the TRANSPORT variables are unbounded; b) the RESOUREQ equations are infeasible; c) the

8-12

RESOUREQ equation for top capacity at PLANT2 causes all the variables in it to be zero.

We recommend use of the ANALYSIS procedure on newly developed models as it quickly

identifies structural problems allows one to correct them.

8.4.2 Using a Picture

Historically a common techniques for model structural examination has been a “picture”. A

picture portrays the overall model as a schematic where each row and column of the picture represents

each individual equation and variable in the model. A picture routine has been written and implemented

in GAMSCHK. One invokes it using the GCK file PICTURE possibly followed by variable and

equation selections. An example picture of our basic model is in Table 8.14 while an example picture of

the messed up model is in Table 8.15.

GAMSCHK pictures consist of four parts. The first part (Table 8.14, Panel A) defines the

coefficient codes used in the schematic. Negative entries within the matrix are coded as numerical

entries while positive entries are coded as alphabetic characters. Zeros are coded as blanks.

Furthermore, the further the alphabetic character is from A the larger the positive number while larger

digits are used to portray larger absolute value negative numbers.

The picture also contains codes for the variable and equation names. This is necessary since a

GAMS allows up to 10 subscripts to be used on a variable, each of which can be 10 characters long ,

thus the item names can be as long as 121 characters. Panels C and D give a definition of the codes

used for each variable and equation.

The Panel B part of picture can be used for structural examination. This output represents the

complete programming model matrix. It is useful in this context to compare Table 8.14 to the tableau in

Figure 8.1. Notice we have a 1 to 1 correspondence between the locations of the numbers and symbols

 1 GAMS because of its objective function equation structure may reverse
the objective function signs, thus one must be careful to understand the
signs before interpreting the picture..

8-13

in the model. The dense block under MAKE variables 3-8 and RESOUREQ equations 1-4 and

represents the resource usages that are associated with PLANT1 chair manufacturing. Similarly the

transportation variables have plus and minus one entries in the product balances as depicted as the “C”’s

and “3’s” in the picture in the PLANTPROD equations under the TRANSPORT variables.

As mentioned above a coding scheme is employed for the variables and equations. Let us briefly

define that scheme. When a variable, for example the MAKE variable, has more than 10 entries the

name is strung out horizontally with variable numbers entered. Thus, the MAKE variable with a 8

under it in Table 8.15, Panel B is the eighth MAKE variable of 24. The dictionary shows that MAKE

variable 8 makes fancy chairs at plant 1 using the normal lathe process. However, when there are less

than 10 entries for a variable, as for SELL, then the variable name is listed vertically with a number

below it. Thus, we have SELL variables 1-4 which again more extensively defined in the dictionary.

The equation codes are essentially the same with equations with nine or less and more than ten cases

listed differently. Again the equation dictionary (Panel D) identifies the full names.

Such a picture allows identification of structural problems. For example in the second picture

(Table 8.15) the RESOUREQ equations clearly are shown as requiring positive coefficients to be less

than or equal to a negative right-hand side. This causes infeasibility. Similarly the TRANSPORT

variables are shown to have negative (revenue producing)1 coefficients in the objective function and

negatives in the # equations which will be unbounded.

The picture routine can generate a large amount of output. For example, in the pictures used

8-14

herein we get 33 variables and 60 equations per page. The picture output for a model with 500

variables and 300 equations would be 91 pages long and difficult to deal with. (Note: One can expand

width and use a small font). The BLOCKPIC procedure discussed in the next section is designed for

looking at such large models.

PICTURE has been designed to portray model subcomponents. In particular, to picture the

subcomponent involving the RESOUREQ equations and the MAKE variables one would use the GCK

file:

PICTURE
VARIABLES
MAKE
EQUATIONS
RES*

The resultant picture is listed in Table 8.16.

Pictures the model structural interrelationships between variables and equations. However,

pictures can be very large but one can restrict attention to sub-components or turn to the more

aggregate picture generated by BLOCKPIC. In addition, we recommend that one work from SMALL

TO LARGE. In that setting the picture can be used in examining the small variants of a model which

should have most features in common with the larger true models.

 8.4.3 Using BLOCKPIC

BLOCKPIC is a more aggregate tool for examining model structure. This creates a picture as

well as other output which deals with the variables and equations by block. Thus, much larger models

can be handled. However for the output to be meaningful the coefficients in the blocks must be

relatively homogeneous (i.e., it is nice for all coefficients in the intersection of an equation and a variable

8-15

block to be of the same sign).

BLOCKPIC was applied to the messed up example using a GCK file containing the keyword

BLOCKPIC. In turn the output in Tables 8.17 (Panels A-F) was generated. Therein Panel A gives an

overall model view giving variable block names, equation block names, equation types, and variable

types. The signs of the coefficients at the intersection of each variable and equation block are identified

with a “+” if all are positive, a “-” if all are negative and a “m” if they are mixed. Panel A sows all the

MAKE variables have positive coefficients in the objective function (OBJT), and RESOUREQ

equations, while all coefficients in the PLANTPROD equations are negative. Also, note the variable

type at the bottom is “+” for variables that are greater than or equal to zero; “-” for variables that are

less than or equal to zero and “u” for variables that are unrestricted in sign (free).

 The utility of the Panel A information involves more complex models. Table 8.18 contains the

Panel A information for the ASM example that was used in Chapter 5. This picture summarizes the

overall structure of a model with several hundred variables and constraints showing broad structural

characteristics. Note, the same aggregate picture occurs for the full version of ASM which has tens of

thousands of variables and multiple thousands of equations. The second and third picture variants are

given in Table 8.17, Panel B and C. Here counts of elements appearing in each block intersection are

given in total or on average. This shows there are 24 MAKE variables, 16 (panel B) or 0.667 on

average (Panel C) of which have positive coefficients in OBJT. Further in those 24 variables, there are

56 in total, or 2.333 on average, positive coefficients in the RESOUREQ equation and 24 in total, or -

1.0 on average, negative coefficients in the PLANTPROD equations. Similarly, in Panel B we see for

the PLANTPROD equation there are 24 negatives under the MAKE variables, 16 negatives under

TRANSPORT, 8 positives under SELL and this equation is less than or equal to zero, with similar

8-16

information in Panel C . A count of the number of equations in a block is displayed. These picture

variants also supports diagnosis of model problems. For example, the RESOURCEQ equation shows

that positive coefficient times greater than or equal to zero variables less than or equal to a negative.

This error will be detected in the block level analysis output.

Panel D presents block level scaling information. This shows the maximum and minimum values

of coefficients in a block. Thus it shows for example, under the SELL variable in the OBJT the

maximum absolute coefficient 850 while the minimum is 400. In the PLANTPROD equation the

maximum coefficient is a 6 while the minimum is a one. This scaling information will be used in the

latter discussion.

 Finally, Panels E and F report the results of block level structural diagnosis tests. Here the

checks in Table 8.10 and 8.11 are applied at the block level indicating when problems exist for all

equations or variables in a block. In the messed up example BLOCKPIC identifies the errors with

respect to the TRANSPORT variables and the RESOUREQ equations.

The BLOCKPIC level analysis is particularly useful since when an problem is identified in all

equations, or variables in a block this usually points to major data or equation structure problems. This

analysis can also be generated without the pictures by BLOCKLIST as identified in the next section.

8.4.4 Using BLOCKLIST

 BLOCKLIST displays the characteristics of variable and column blocks and runs a structural

analysis. It is invoked by using a GCK file containing the keyword BLOCKLIST. The output for our

messed up example is that given in Table 8.19. Therein for each variable block the display includes the

block name, the sign restriction on the variables, how many cases are defined, how many of variables

contain nonlinear terms, as well as counts of the number of positive, negative and nonlinear terms. Also

8-17

the maximum and minimum absolute values of the but also get counts of the number of positive and

negative right-hand sides. We also get block level structural analysis as an BLOCKPIC using the same

tests as discussed under the ANALYSIS procedure.

8.4.5 Using DISPLAYCR

The GAMS LIMROW and LIMCOL options are not easy to target on the specific structural

items one wishes to examine. DISPLAYCR displays user selected variables and equations. Users can

name variables and/or equations for display as well as choose all variables that appear in a particular

equation or all equations in which a variable appears. One can also display coefficients at the

intersection of selected equations and variables. Items are selected through a GCK such as

DISPLAYCR
VARIABLES
TR*
EQUATIONS
RES*

in turn generating the output in Table 8.20. This output allows structural examination in essentially the

same manner as discussed in the LIMROW/LIMCOL section above. Several other illustrations show

the potential uses of DISPLAYCR.

A) Use of the GCK file

DISPLAYCR
INEQUATIONS
PLANTPROD (PLANT1)

Causes display of all variables that appear in the PLANTPROD equations for the

PLANT1 case.

B) Modifying the last line above to PLANTPROD (PLANT1, TABLES) further restricts

8-18

the variables to only those that are in the PLANTPROD equations for the PLANT1 and

TABLES cases. One could also use

DISPLAYCR
INVARIABLES
MAKE (PLANT2, *, *, FANCY)

c) Use of the commands
DISPLAYCR
VARIABLES
MAKE
EQUATIONS
PLANTPROD
INTERSECT

yields a display of the coefficients at the intersection of the MAKE variables with the

PLANTPROD equations. Through this one can display submatrices in the model.

8.4.6 Using MATCHIT

Users may wish to make lists of items that are present and their aggregate characteristics.

MATCHIT creates such lists and can be used in two modes. First, one count the number of variables

and/or equations matching a particular profile. Second, one can request lists of each item which does

match and their characteristics. MATCHIT is invoked using an GCK file like

MATCHIT
VARIABLES
MAKE(Plant 2)
LIST VARIABLES
TRNSPORT
EQUATIONS
RESOUREQ
LISTEQUATIONS

 PLANTPROD(PLANT1)

The items selected under a variables or equations command without the list modifier are totaled across

all matching items. When the list modifier is present each item is listed. The characteristics summarized

8-19

include a) whether or not nonlinear terms are present; b) total number of coefficients; c)number of

positive, negative, and nonlinear coefficients; d) maximum, and minimum, absolute values of coefficients

and e) under the aggregate display number of items matched This MATCHIT information is designed

to facilitate scaling and general inquiries on number of items variables in a model.

8.4.7 GAMSCHK and Nonlinear Terms

One feature worthy of mention when discussing GAMSCHK and the GAMS LIMROW,

LIMCOL outputs is the handling of nonlinear terms. In particular, the nonlinear coefficients in the

displays are Taylor series expansions around the current solution point. This current solution point is

either the starting point the user originally provided in the GAMS program, or the point that was found

during the last solve executed. Thus, if the model has not been solved, the starting point will be the

base point for the Taylor series expansion. Otherwise the last solution will be used. If a starting point is

not provided,, then a number based on the upper and lower bounds is used for the starting point. If

bounds are not provided for some of the nonlinear variables then the starting point used is usually zero.

This means that the first LIMROW LIMCOL or GAMSCHK display can be misleading as many the

variables may well expanded around zero.

This has major implications for GAMSCHK users. The nonlinear terms are only point

depictions of nonlinear terms. Namely, the Taylor series expansions around the current starting or

solution point are not global values. Thus, procedures like ANALYSIS may be misleading in that they

may conclude that there are flaws in the problem but the flaw may be due to nonlinear coefficients

being expanded around a poor starting point. The flaws may not even be present because when the

nonlinear terms expanded around a more relevant point, then a markedly different coefficient may arise

which may even have an entirely different sign. The GAMSCHK output contains three asterisks in the

8-20

coefficient by coefficient displays to identify where nonlinear terms appear whereas some of the other

features will count how many nonlinear terms are present. If one is solving a model and wishes to have

current information on the value of the nonlinear terms a second solution needs to be done causing the

nonlinear terms to be expanded about the current solution point. This might be done by using for

example the following sequence

option NLP = minos5;
 solve mymodel using NLP Maximizing return;

option NLP = GAMSchk;
solve mymodel using NLP Maximizing return;

This would result in GAMSCHK output based on nonlinear terms expanded around the solution point

from the last solve. Thus, the displays would depict the values for the nonlinear terms that the solver

was considering when it terminated. This is important when trying to find modeling errors in nonlinear

models.

These points are probably best illustrated by example. Consider the following problem

(nonlinp.gms):

3 variables z
 4 positive variables
 5 x1
 6 x2
 7 equations
 8 r1
 9 r2
 10 r3;
 11 r1.. z=e= 2*(x1-5)*(x1-5) + (x2-10)*(x2-10);
 12 r2.. x1+x2 =g= 10;
 13 r3.. (x1**2 - 3*x1+4) + x2**0.5 =l=100;
 16 model nonlin /all/
 17 option nlp=gamschk
 18 solve nonlin using nlp minimizing z;
 19 solve nonlin using nlp minimizing z;

In this model the variables X1 and X2 enter the first and third equations in a nonlinear fashion. GAMS

8-21

selects the starting point for these variables to be zero since no bounds are specified. In turn the

aggregate block picture looks as follows

 | | R
 | X X | H
 | Z 1 2 | S

 R1 | + + + | E 0
 R2 | + + | G +
 R3 | - | L +

 Variable Typ | u + +

This picture portrays X1 and X2 with positive coefficients in the objective function (R1). These are

clearly only local values as for example having X1 equaling 5 would lead to an effective objective

function coefficient of zero. Similarly, X1 is depicted with a negative coefficient in the third constraint

but as X1 becomes larger then the coefficients in that constraint would become positive. These local

values cause the ANALYSIS to identify errors and issue warnings. In particular, ANALYSIS

concludes that the first constraint would cause all variables in it to be zero while the variables X1 and

X2 are identified as unbounded and the third constraint is called redundant.

The situation is significantly changed by the second execution of a solve where the Taylor

expansions are updated. Namely, the block picture becomes:

 | | R
 | X X | H
 | Z 1 2 | S

 R1 | + | E 0
 R2 | + + | G +
 R3 | + + | L +

 Variable Typ | u + +

8-22

Here the coefficients for the two variables in the objective function have become zero whereas the

coefficient for X1 in the third equation has become positive, as has the coefficient for X2. Analysis now

comes up with different conclusions. In particular, the only identified problem is that the first equation

is said to cause all variables in it to have to be zero. Again this shows that ANALYSIS can generate

misleading conclusions because it operates based on local values for the nonlinear terms. The user gets

an indication of this since when ANALYSIS executes it invokes DISPLAYCR to provide information

on the exact appearance of the equations and variables at which it is looking. The output from that

follows:

----## EQU R1
 Z 1.0000
 X1 *** 0.00000E+00
 X2 *** 0.00000E+00
 =E= 0.00000E+00

The message below also appears when analysis is dealing with nonlinear terms.

**** There are nonlinear terms here, so message
 may only refer to a local phenomena

Here notice that the coefficients on X1 and X2 in R1 - the objective function equation - are marked with

three asterisks indicating that these terms are nonlinear Taylor series expansions.

This reinforces the main point. The coefficients that are employed in GAMSCHK or the GAMS

LIMROW LIMCOL displays are first order Taylor series expansions around the current point. This

may lead GAMSCHK to misleading conclusions about the structure of model. These points may also

be more accurately depicted by causing them to be re-expanded around for solution point so that one

may see the exact parameters that the solver was considering at the time of termination.

8-23

8.4.8 GAMSCHK Summary

GAMSCHK facilitates two types of presolution structural checking. First, automatic discovery

of block level model structural errors is done within ANALYSIS, BLOCKPIC, and BLOCKLIST.

Second, model structure can be portrayed with pictures, displays, item counts etc possible depending on

user choice. On caution, as discussed in the last section the presence of nonlinear terms can lead to

misleading results since only local Taylor series expansions around the current solution point are

considered.

8.5 Overall Summary for Structural Checking

Structural checking can be done via GAMS, GAMS solvers or GAMSCHK. One can also

verify the equations algebraically and manually. We have written GAMSCHK and distribute through

the web page agrinet.tamu.edu/mccarl to aid modelers in the quest for finding structural problems.

Unfortunately, the discovery of structural errors is not always simple and does require a combination of

problem specific knowledge, careful modeling, numerical investigations of the model, and repeated

solution using the tools discussed in this and the next chapter.

Nonlinear programs provide special challenges. Unfortunately, the structural checking

supported by GAMSCHK can be misleading. In particular, the coefficients for the values of nonlinear

terms that all are displayed are entirely based upon local Taylor series expansions. GAMSCHK has no

way of knowing about the global values of these terms. This is discussed in section 8.4.7 above.

8-24

Table 8.1 GAMS Input for Basic Example

 9 * SECTION A SET DEFINITION
 11 SET PRODUCT PRODUCTS /TABLES, CHAIRS/
 12 TYPE TYPES OF PRODUCT /FUNCT ,FANCY/
 13 RESOURCE TYPES OF RESOURCES
 14 /SMLLATHE,LRGLATHE,CARVER,LABOR,TOP/
 15 METHOD PRODUCTION METHODS /NORMAL,MAXSML,MAXLRG/
 16 PLANT DIFFERENT PLANTS /PLANT1, PLANT2/;
 17 ALIAS(PLANT,PLANTS);
 18 * SECTION B DATA DEFINITION
 20 TABLE PRODCOST(PRODUCT,METHOD,TYPE) PRODUCTION COST
 22 FUNCT FANCY
 23 CHAIRS.NORMAL 15 25
 24 CHAIRS.MAXSML 16 26
 25 CHAIRS.MAXLRG 17 27
 26 TABLES.NORMAL 80 100;
 28 TABLE RES(RESOURCE,PRODUCT,TYPE,METHOD) RESOURCE USE
 30 CHAIRS.FUNCT.NORMAL CHAIRS.FUNCT.MAXSML CHAIRS.FUNCT.MAXLRG
 31 SMLLATHE 8 13 2
 32 LRGLATHE 5 2 13
 33 CARVER 4 4 4
 34 LABOR 10 11 11
 35 + CHAIRS.FANCY.NORMAL CHAIRS.FANCY.MAXSML CHAIRS.FANCY.MAXLRG
 36 SMLLATHE 12 17 5
 37 LRGLATHE 7 3 15
 38 CARVER 10 10 10
 39 LABOR 8 8 8
 40 + TABLES.FUNCT.NORMAL TABLES.FANCY.NORMAL
 41 LABOR 3 5
 42 TOP 1 1 ;
 44 TABLE TRANSCOST(PRODUCT,TYPE,PLANT,PLANTS) TRANSPORT COST
 46 PLANT1.PLANT2 PLANT2.PLANT1
 47 CHAIRS.FUNCT 5 5
 48 TABLES.FUNCT 14
 49 CHAIRS.FANCY 5 5
 50 TABLES.FANCY 18 ;
 53 TABLE PRICE(PLANT,TYPE) PRICE OF SETS
 54 FUNCT FANCY
 55 PLANT1 400 800
 56 PLANT2 425 850
 58 TABLE RESORAVAIL(RESOURCE,PLANT) RESOURCES AVAILABLE
 59 PLANT1 PLANT2
 60 TOP 500
 61 SMLLATHE 1100 1400
 62 LRGLATHE 880 900
 63 CARVER 500 1200
 64 LABOR 1750 1250 ;
 66 TABLE PRODPERSET(PRODUCT,TYPE) PRODUCTS PER SET
 68 FANCY FUNCT
 69 CHAIRS 6 4
 70 TABLES 1 1
 72 TABLE ACTIVITY(PLANT,PRODUCT,METHOD) TELLS IF PLANT MAKES PRODUCT
 73 TABLES.NORMAL CHAIRS.(NORMAL,MAXSML,MAXLRG)

8-25

Table 8.1 GAMS Input for Basic Example(continued)

 74 PLANT1 1 1
 75 PLANT2 1
 76
 77 * SECTION C MODEL DEFINITION
 79 POSITIVE VARIABLES
 80 MAKE(PLANT,PRODUCT,METHOD,TYPE) NUMBER OF ITEMS MADE
 81 TRNSPORT(PRODUCT,TYPE,PLANT,PLANTS) NUMBER OF ITEMS TRANSPORTED
 82 SELL(PLANT,TYPE) NUMBER OF SETS SOLD;
 83 VARIABLES
 84 NETINCOME PROFIT;
 85 EQUATIONS
 86 OBJT OBJECTIVE FUNCTION (PROFIT)
 87 RESOUREQ(PLANT,RESOURCE) RESOURCES AVAILABLE
 88 PLANTPROD(PLANT,PRODUCT,TYPE) PRODUCT BALANCE FOR A PLANT;
 89
 90 OBJT.. NETINCOME =E=
 91 SUM((PLANT,TYPE),
 92 PRICE(PLANT,TYPE) * SELL(PLANT,TYPE))
 93 - SUM((PLANT,PRODUCT,METHOD,TYPE)
 94 $ACTIVITY(PLANT,PRODUCT,METHOD)
 95 ,MAKE(PLANT,PRODUCT,METHOD,TYPE)*PRODCOST(PRODUCT,METHOD,TYPE))
 96 - SUM((PRODUCT,TYPE,PLANT,PLANTS)
 97 $TRANSCOST(PRODUCT,TYPE,PLANT,PLANTS)
 98 ,TRANSCOST(PRODUCT,TYPE,PLANT,PLANTS)
 99 *TRNSPORT(PRODUCT,TYPE,PLANT,PLANTS));
 100
 101 RESOUREQ(PLANT,RESOURCE)..
 102 SUM((PRODUCT,TYPE,METHOD)
 103 $ACTIVITY(PLANT,PRODUCT,METHOD)
 104 ,RES(RESOURCE,PRODUCT,TYPE,METHOD)
 105 *MAKE(PLANT,PRODUCT,METHOD,TYPE))
 106 =l= RESORAVAIL(RESOURCE,PLANT) ;
 107
 108 PLANTPROD(PLANT,PRODUCT,TYPE)..
 109 SUM(PLANTS
 110 $TRANSCOST(PRODUCT,TYPE,PLANT,PLANTS)
 111 ,TRNSPORT(PRODUCT,TYPE,PLANT,PLANTS))
 112 - SUM(PLANTS
 113 $TRANSCOST(PRODUCT,TYPE,PLANTS,PLANT)
 114 ,TRNSPORT(PRODUCT,TYPE,PLANTS,PLANT))
 115 + SELL(PLANT,TYPE)*PRODPERSET(PRODUCT,TYPE)
 116 =L= SUM(METHOD
 117 $ACTIVITY(PLANT,PRODUCT,METHOD)
 118 ,MAKE(PLANT,PRODUCT,METHOD,TYPE));
 120 MODEL FIRM /ALL/;
 121 OPTION SOLPRINT = ON ;
 123 * SECTION D SOLVE THE PROBLEM
 124 OPTION LP=GAMSCHK
 125 SOLVE FIRM USING LP MAXIMIZING NETINCOME;

8-26

Figure 8.1 Tableau of Example Model

Manufacturing Transport

 PLANT1 PLANT2 Tables Chairs Sales of Dining Set RHS

Tables Chairs Chairs Fun Fan Funct Fancy

Normal Normal Maxsml Mxlrg Normal Maxsml Maxlrg PLl PL1 P1 P2 p1 p22 PLANT1 PLANT2

Fun Fan Fun Fan Fun Fan Fun Fan Fun Fan Fun Fan Fun Fan PL2 PL2 P2 p1 p2 p11 Fun Fan Fun Fan

Objective -80 -100 -15 -25 -16 -26 -17 -27 -15 -25 -16 -26 -17 -27 -14 -18 -5 -5 -5 -5 400 800 -425 -850 Max

R p Smllathe 8 12 13 17 2 5 # 1100

e l Lrglathe 5 7 2 3 13 15 # 880

s n Carver 4 10 4 10 4 10 # 500

o t Labor 3 5 10 8 11 8 11 8 # 1750

u 1 Top fit 1 1 # 500

r p Smllathe 8 12 13 17 2 5 # 1400

c 1 Lrglathe 5 7 2 3 13 15 # 900

e t Carver 4 10 4 10 4 10 # 1200

s 2 Labor 10 8 11 8 11 8 # 1250

p T Fu -1 1 1 # 0

P 1 b Fa -1 1 1 # 0

r n

o t C Fu -1 -1 -1 1 -1 4 # 0

d 1 h Fa -1 -1 -1 1 -1 6 # 0

b

a p T Fu -1 1 # 0

l 1 b Fa -1 1 # 0

n t C Fu -1 -1 -1 -1 1 4 # 0

c 2 h Fa -1 -1 -1 -1 1 6 # 0

8-27

Table 8.2 GAMS Input for Throughly Messed Up Example

 9 * SECTION A SET DEFINITION
 11 SET PRODUCT PRODUCTS /TABLES, CHAIRS/
 12 TYPE TYPES OF PRODUCT /FUNCT ,FANCY/
 13 RESOURCE TYPES OF RESOURCES
 14 /SMLLATHE,LRGLATHE,CARVER,LABOR,TOP/
 15 METHOD PRODUCTION METHODS /NORMAL,MAXSML,MAXLRG/
 16 PLANT DIFFERENT PLANTS /PLANT1, PLANT2/;
 17 ALIAS(PLANT,PLANTS);
 18 * SECTION B DATA DEFINITION
 20 TABLE PRODCOST(PRODUCT,METHOD,TYPE) PRODUCTION COST
 22 FUNCT FANCY
 23 CHAIRS.NORMAL 15 25
 24 CHAIRS.MAXSML 16 26
 25 CHAIRS.MAXLRG 17 27
 26 TABLES.NORMAL 80 100;
 28 TABLE RES(RESOURCE,PRODUCT,TYPE,METHOD) RESOURCE USE
 30 CHAIRS.FUNCT.NORMAL CHAIRS.FUNCT.MAXSML CHAIRS.FUNCT.MAXLRG
 31 SMLLATHE 8 13 2
 32 LRGLATHE 5 2 13
 33 CARVER 4 4 4
 34 LABOR 10 11 11
 35 + CHAIRS.FANCY.NORMAL CHAIRS.FANCY.MAXSML CHAIRS.FANCY.MAXLRG
 36 SMLLATHE 12 17 5
 37 LRGLATHE 7 3 15
 38 CARVER 10 10 10
 39 LABOR 8 8 8
 40 + TABLES.FUNCT.NORMAL TABLES.FANCY.NORMAL
 41 LABOR 3 5
 42 TOP 1 1 ;
 44 TABLE TRANSCOST(PRODUCT,TYPE,PLANT,PLANTS) TRANSPORT COST
 46 PLANT1.PLANT2 PLANT2.PLANT1
 47 CHAIRS.FUNCT 5 5
 48 TABLES.FUNCT 14
 49 CHAIRS.FANCY 5 5
 50 TABLES.FANCY 18 ;
 53 TABLE PRICE(PLANT,TYPE) PRICE OF SETS
 54 FUNCT FANCY
 55 PLANT1 400 800
 56 PLANT2 425 850
 58 TABLE RESORAVAIL(RESOURCE,PLANT) RESOURCES AVAILABLE
 59 PLANT1 PLANT2
 60 TOP 500
 61 SMLLATHE 1100 1400
 62 LRGLATHE 880 900
 63 CARVER 500 1200
 64 LABOR 1750 1250 ;
 66 TABLE PRODPERSET(PRODUCT,TYPE) PRODUCTS PER SET
 68 FANCY FUNCT
 69 CHAIRS 6 4
 70 TABLES 1 1
 72 TABLE ACTIVITY(PLANT,PRODUCT,METHOD) TELLS IF PLANT MAKES PRODUCT
 73 TABLES.NORMAL CHAIRS.(NORMAL,MAXSML,MAXLRG)
 74 PLANT1 1 1
 75 PLANT2 1
 76

8-28

Table 8.2 GAMS Input for Throughly Messed Up Example (continued)

 77 * SECTION C MODEL DEFINITION
 79 POSITIVE VARIABLES
 80 MAKE(PLANT,PRODUCT,METHOD,TYPE) NUMBER OF ITEMS MADE
 81 TRNSPORT(PRODUCT,TYPE,PLANT,PLANTS) NUMBER OF ITEMS TRANSPORTED
 82 SELL(PLANT,TYPE) NUMBER OF SETS SOLD;
 83 VARIABLES
 84 NETINCOME PROFIT;
 85 EQUATIONS
 86 OBJT OBJECTIVE FUNCTION (PROFIT)
 87 RESOUREQ(PLANT,RESOURCE) RESOURCES AVAILABLE
 88 PLANTPROD(PLANT,PRODUCT,TYPE) PRODUCT BALANCE FOR A PLANT;
 90 OBJT.. NETINCOME =E=
 91 SUM((PLANT,TYPE),
 92 PRICE(PLANT,TYPE) * SELL(PLANT,TYPE))
 93 - SUM((PLANT,PRODUCT,METHOD,TYPE)
 94 * $ACTIVITY(PLANT,PRODUCT,METHOD)
 95 ,MAKE(PLANT,PRODUCT,METHOD,TYPE)*PRODCOST(PRODUCT,METHOD,TYPE))
 96 + SUM((PRODUCT,TYPE,PLANT,PLANTS)
 97 * $TRANSCOST(PRODUCT,TYPE,PLANT,PLANTS)
 98 ,TRANSCOST(PRODUCT,TYPE,PLANT,PLANTS)
 99 *TRNSPORT(PRODUCT,TYPE,PLANT,PLANTS));
 100
 101 RESOUREQ(PLANT,RESOURCE)..
 102 SUM((PRODUCT,TYPE,METHOD)
 103 * $ACTIVITY(PLANT,PRODUCT,METHOD)
 104 ,RES(RESOURCE,PRODUCT,TYPE,METHOD)
 105 *MAKE(PLANT,PRODUCT,METHOD,TYPE))
 106 =l= -RESORAVAIL(RESOURCE,PLANT) ;
 107
 108 PLANTPROD(PLANT,PRODUCT,TYPE)..
 109 0*SUM(PLANTS
 110 * $TRANSCOST(PRODUCT,TYPE,PLANT,PLANTS)
 111 ,TRNSPORT(PRODUCT,TYPE,PLANT,PLANTS))
 112 - SUM(PLANTS
 113 * $TRANSCOST(PRODUCT,TYPE,PLANTS,PLANT)
 114 ,TRNSPORT(PRODUCT,TYPE,PLANTS,PLANT))
 115 + SELL(PLANT,TYPE)*PRODPERSET(PRODUCT,TYPE)
 116 =L= SUM(METHOD
 117 * $ACTIVITY(PLANT,PRODUCT,METHOD)
 118 ,MAKE(PLANT,PRODUCT,METHOD,TYPE));
 120 MODEL FIRM /ALL/;
 121 OPTION SOLPRINT = ON ;
 123 * SECTION D SOLVE THE PROBLEM
 124 OPTION LP=GAMSCHK
 125 SOLVE FIRM USING LP MAXIMIZING NETINCOME;

8-29

Table 8.3 LIMROW AND LIMCOL Output

---- OBJT =E= OBJECTIVE FUNCTION (PROFIT)
OBJT.. 80*MAKE(PLANT1,TABLES,NORMAL,FUNCT) + 100*MAKE(PLANT1,TABLES,NORMAL,FANCY)
 + 15*MAKE(PLANT1,CHAIRS,NORMAL,FUNCT) + 25*MAKE(PLANT1,CHAIRS,NORMAL,FANCY)
 + 16*MAKE(PLANT1,CHAIRS,MAXSML,FUNCT) + 26*MAKE(PLANT1,CHAIRS,MAXSML,FANCY)
 + 17*MAKE(PLANT1,CHAIRS,MAXLRG,FUNCT) + 27*MAKE(PLANT1,CHAIRS,MAXLRG,FANCY)
 + 80*MAKE(PLANT2,TABLES,NORMAL,FUNCT) + 100*MAKE(PLANT2,TABLES,NORMAL,FANCY)
 + 15*MAKE(PLANT2,CHAIRS,NORMAL,FUNCT) + 25*MAKE(PLANT2,CHAIRS,NORMAL,FANCY)
 + 16*MAKE(PLANT2,CHAIRS,MAXSML,FUNCT) + 26*MAKE(PLANT2,CHAIRS,MAXSML,FANCY)
 + 17*MAKE(PLANT2,CHAIRS,MAXLRG,FUNCT) + 27*MAKE(PLANT2,CHAIRS,MAXLRG,FANCY)
 - 14*TRNSPORT(TABLES,FUNCT,PLANT1,PLANT2) - 18*TRNSPORT(TABLES,FANCY,PLANT1,PLANT2)
 - 5*TRNSPORT(CHAIRS,FUNCT,PLANT1,PLANT2) - 5*TRNSPORT(CHAIRS,FUNCT,PLANT2,PLANT1)
 - 5*TRNSPORT(CHAIRS,FANCY,PLANT1,PLANT2) - 5*TRNSPORT(CHAIRS,FANCY,PLANT2,PLANT1)
 - 400*SELL(PLANT1,FUNCT) - 800*SELL(PLANT1,FANCY) - 425*SELL(PLANT2,FUNCT)
 - 850*SELL(PLANT2,FANCY) + NETINCOME =E= 0 ; (LHS = 0)

---- RESOUREQ =L= RESOURCES AVAILABLE

RESOUREQ(PLANT1,SMLLATHE).. 8*MAKE(PLANT1,CHAIRS,NORMAL,FUNCT)
 + 12*MAKE(PLANT1,CHAIRS,NORMAL,FANCY) + 13*MAKE(PLANT1,CHAIRS,MAXSML,FUNCT)
 + 17*MAKE(PLANT1,CHAIRS,MAXSML,FANCY) + 2*MAKE(PLANT1,CHAIRS,MAXLRG,FUNCT)
 + 5*MAKE(PLANT1,CHAIRS,MAXLRG,FANCY) =L= -1100 ; (LHS = 0, INFIES = 1100 ***)

RESOUREQ(PLANT1,LRGLATHE).. 5*MAKE(PLANT1,CHAIRS,NORMAL,FUNCT)
 + 7*MAKE(PLANT1,CHAIRS,NORMAL,FANCY) + 2*MAKE(PLANT1,CHAIRS,MAXSML,FUNCT)
 + 3*MAKE(PLANT1,CHAIRS,MAXSML,FANCY) + 13*MAKE(PLANT1,CHAIRS,MAXLRG,FUNCT)
 + 15*MAKE(PLANT1,CHAIRS,MAXLRG,FANCY) =L= -880 ; (LHS = 0, INFIES=880 ***)

REMAINING 8 ENTRIES SKIPPED

---- PLANTPROD =L= PRODUCT BALANCE FOR A PLANT

PLANTPROD(PLANT1,TABLES,FUNCT).. - MAKE(PLANT1,TABLES,NORMAL,FUNCT)
 - MAKE(PLANT1,TABLES,MAXSML,FUNCT) - MAKE(PLANT1,TABLES,MAXLRG,FUNCT)
 - TRNSPORT(TABLES,FUNCT,PLANT1,PLANT1) - TRNSPORT(TABLES,FUNCT,PLANT2,PLANT1)
 + SELL(PLANT1,FUNCT) =L= 0 ; (LHS = 0)

PLANTPROD(PLANT1,TABLES,FANCY).. - MAKE(PLANT1,TABLES,NORMAL,FANCY)
 - MAKE(PLANT1,TABLES,MAXSML,FANCY) - MAKE(PLANT1,TABLES,MAXLRG,FANCY)
 - TRNSPORT(TABLES,FANCY,PLANT1,PLANT1) - TRNSPORT(TABLES,FANCY,PLANT2,PLANT1)
 + SELL(PLANT1,FANCY) =L= 0 ; (LHS = 0)

REMAINING 6 ENTRIES SKIPPED
---- MAKE NUMBER OF ITEMS MADE
MAKE(PLANT1,TABLES,NORMAL,FUNCT)
 (.LO, .L, .UP = 0, 0, +INF)
 80 OBJT

8-30

Table 8.3 LIMROW AND LIMCOL Output(continued)

 3 RESOUREQ(PLANT1,LABOR)
 1 RESOUREQ(PLANT1,TOP)
 -1 PLANTPROD(PLANT1,TABLES,FUNCT)

MAKE(PLANT1,TABLES,NORMAL,FANCY)
 (.LO, .L, .UP = 0, 0, +INF)
 100 OBJT
 5 RESOUREQ(PLANT1,LABOR)
 1 RESOUREQ(PLANT1,TOP)
 -1 PLANTPROD(PLANT1,TABLES,FANCY)

MAKE(PLANT1,TABLES,MAXSML,FUNCT)
 (.LO, .L, .UP = 0, 0, +INF)
 -1 PLANTPROD(PLANT1,TABLES,FUNCT)
REMAINING 21 ENTRIES SKIPPED

---- TRNSPORT NUMBER OF ITEMS TRANSPORTED
TRNSPORT(TABLES,FUNCT,PLANT1,PLANT1)
 (.LO, .L, .UP = 0, 0, +INF)
 -1 PLANTPROD(PLANT1,TABLES,FUNCT)

TRNSPORT(TABLES,FUNCT,PLANT1,PLANT2)
 (.LO, .L, .UP = 0, 0, +INF)
 -14 OBJT
 -1 PLANTPROD(PLANT2,TABLES,FUNCT)

TRNSPORT(TABLES,FUNCT,PLANT2,PLANT1)
 (.LO, .L, .UP = 0, 0, +INF)
 -1 PLANTPROD(PLANT1,TABLES,FUNCT)
REMAINING 13 ENTRIES SKIPPED

---- SELL NUMBER OF SETS SOLD
SELL(PLANT1,FUNCT)
 (.LO, .L, .UP = 0, 0, +INF)
 -400 OBJT
 1 PLANTPROD(PLANT1,TABLES,FUNCT)
 4 PLANTPROD(PLANT1,CHAIRS,FUNCT)

SELL(PLANT1,FANCY)
 (.LO, .L, .UP = 0, 0, +INF)
 -800 OBJT
 1 PLANTPROD(PLANT1,TABLES,FANCY)
 6 PLANTPROD(PLANT1,CHAIRS,FANCY)

SELL(PLANT2,FUNCT)
 (.LO, .L, .UP = 0, 0, +INF)
 -425 OBJT
 1 PLANTPROD(PLANT2,TABLES,FUNCT)
 4 PLANTPROD(PLANT2,CHAIRS,FUNCT)
REMAINING ENTRIES SKIPPED

---- NETINCOME PROFIT

NETINCOME
 (.LO, .L, .UP = -INF, 0, +INF)
 1 OBJT

Table 8.4 LIMROW Output After Set Reordering

---- OBJT =E= OBJECTIVE FUNCTION (PROFIT)

OBJT.. 80*MAKE(PLANT2,TABLES,NORMAL,FUNCT) + 100*MAKE(PLANT2,TABLES,NORMAL,FANCY)

8-31

 + 15*MAKE(PLANT2,CHAIRS,NORMAL,FUNCT) + 25*MAKE(PLANT2,CHAIRS,NORMAL,FANCY)
 + 16*MAKE(PLANT2,CHAIRS,MAXSML,FUNCT) + 26*MAKE(PLANT2,CHAIRS,MAXSML,FANCY)
 + 17*MAKE(PLANT2,CHAIRS,MAXLRG,FUNCT) + 27*MAKE(PLANT2,CHAIRS,MAXLRG,FANCY)
 + 80*MAKE(PLANT1,TABLES,NORMAL,FUNCT) + 100*MAKE(PLANT1,TABLES,NORMAL,FANCY)
 + 15*MAKE(PLANT1,CHAIRS,NORMAL,FUNCT) + 25*MAKE(PLANT1,CHAIRS,NORMAL,FANCY)
 + 16*MAKE(PLANT1,CHAIRS,MAXSML,FUNCT) + 26*MAKE(PLANT1,CHAIRS,MAXSML,FANCY)
 + 17*MAKE(PLANT1,CHAIRS,MAXLRG,FUNCT) + 27*MAKE(PLANT1,CHAIRS,MAXLRG,FANCY)
 - 14*TRNSPORT(TABLES,FUNCT,PLANT1,PLANT2) - 18*TRNSPORT(TABLES,FANCY,PLANT1,PLANT2)
 - 5*TRNSPORT(CHAIRS,FUNCT,PLANT2,PLANT1) - 5*TRNSPORT(CHAIRS,FUNCT,PLANT1,PLANT2)
 - 5*TRNSPORT(CHAIRS,FANCY,PLANT2,PLANT1) - 5*TRNSPORT(CHAIRS,FANCY,PLANT1,PLANT2)
 - 425*SELL(PLANT2,FUNCT) - 850*SELL(PLANT2,FANCY) - 400*SELL(PLANT1,FUNCT)
 - 800*SELL(PLANT1,FANCY) + NETINCOME =E= 0 ; (LHS = 0)

---- RESOUREQ =L= RESOURCES AVAILABLE

RESOUREQ(PLANT2,SMLLATHE).. 8*MAKE(PLANT2,CHAIRS,NORMAL,FUNCT)
 + 12*MAKE(PLANT2,CHAIRS,NORMAL,FANCY) + 13*MAKE(PLANT2,CHAIRS,MAXSML,FUNCT)
 + 17*MAKE(PLANT2,CHAIRS,MAXSML,FANCY) + 2*MAKE(PLANT2,CHAIRS,MAXLRG,FUNCT)
 + 5*MAKE(PLANT2,CHAIRS,MAXLRG,FANCY) =L= -1400 ; (LHS = 0 ***)

RESOUREQ(PLANT2,LRGLATHE).. 5*MAKE(PLANT2,CHAIRS,NORMAL,FUNCT)
 + 7*MAKE(PLANT2,CHAIRS,NORMAL,FANCY) + 2*MAKE(PLANT2,CHAIRS,MAXSML,FUNCT)
 + 3*MAKE(PLANT2,CHAIRS,MAXSML,FANCY) + 13*MAKE(PLANT2,CHAIRS,MAXLRG,FUNCT)
 + 15*MAKE(PLANT2,CHAIRS,MAXLRG,FANCY) =L= -900 ; (LHS = 0 ***)

REMAINING 8 ENTRIES SKIPPED

---- PLANTPROD =L= PRODUCT BALANCE FOR A PLANT

PLANTPROD(PLANT2,TABLES,FUNCT).. - MAKE(PLANT2,TABLES,NORMAL,FUNCT)
 - MAKE(PLANT2,TABLES,MAXSML,FUNCT) - MAKE(PLANT2,TABLES,MAXLRG,FUNCT)
 - TRNSPORT(TABLES,FUNCT,PLANT2,PLANT2) - TRNSPORT(TABLES,FUNCT,PLANT1,PLANT2)
 + SELL(PLANT2,FUNCT) =L= 0 ; (LHS = 0)

PLANTPROD(PLANT2,TABLES,FANCY).. - MAKE(PLANT2,TABLES,NORMAL,FANCY)
 - MAKE(PLANT2,TABLES,MAXSML,FANCY) - MAKE(PLANT2,TABLES,MAXLRG,FANCY)
 - TRNSPORT(TABLES,FANCY,PLANT2,PLANT2) - TRNSPORT(TABLES,FANCY,PLANT1,PLANT2)
 + SELL(PLANT2,FANCY) =L= 0 ; (LHS = 0)

REMAINING 6 ENTRIES SKIPPED

8-32

Table 8.5 Calculations to Find Matrix Errors Using Basic GAMS

 123 parameter amatrix(PLANT,RESOURCE,plant,PRODUCT,TYPE,METHOD) amatrix for model;
 124
 125 amatrix(PLANT,RESOURCE,plant,PRODUCT,TYPE,METHOD)$ACTIVITY(PLANT,PRODUCT,METHOD)=
 126 RES(RESOURCE,PRODUCT,TYPE,METHOD);
 127 option amatrix:0:2:4;display amatrix;
 128
 129 parameter badamatrix(PLANT,PRODUCT,TYPE,METHOD) missing items for variables;
 130
 131 badamatrix(PLANT,PRODUCT,TYPE,METHOD)=1$(sum(resource,
 132 amatrix(PLANT,RESOURCE,plant,PRODUCT,TYPE,METHOD)) le 0);
 133 option badamatrix:0:3:1;display badamatrix;

8-33

Table 8.6 Displays of Calculations to Find Matrix Errors

Panel A - Display of AMatrix

---- 127 PARAMETER AMATRIX amatrix for model

 PLANT1 PLANT1 PLANT1 PLANT1 PLANT1 PLANT1 PLANT1 PLANT1 PLANT2 PLANT2 PLANT2 PLANT2 PLANT2 PLANT2

 TABLES TABLES CHAIRS CHAIRS CHAIRS CHAIRS CHAIRS CHAIRS CHAIRS CHAIRS CHAIRS CHAIRS CHAIRS CHAIRS

 FUNCT FANCY FUNCT FUNCT FUNCT FANCY FANCY FANCY FUNCT FUNCT FUNCT FANCY FANCY FANCY

 NORMAL NORMAL NORMAL MAXSML MAXLRG NORMAL MAXSML MAXLRG NORMAL MAXSML MAXLRG NORMAL MAXSML MAXLRG

PLANT1.SMLLATHE 8 13 2 12 17 5

PLANT1.LRGLATHE 5 2 13 7 3 15

PLANT1.CARVER 4 4 4 10 10 10

PLANT1.LABOR 3 5 10 11 11 8 8 8

PLANT1.TOP 1 1

PLANT2.SMLLATHE 8 13 2 12 17 5

PLANT2.LRGLATHE 5 2 13 7 3 15

PLANT2.CARVER 4 4 4 10 10 10

PLANT2.LABOR 10 11 11 8 8 8

---- 133 PARAMETER BADAMATRIX missing items for variables

 NORMAL MAXSML MAXLRG

PLANT1.TABLES.FUNCT 1 1

PLANT1.TABLES.FANCY 1 1

PLANT2.TABLES.FUNCT 1 1 1

PLANT2.TABLES.FANCY 1 1 1

8-34

Table 8.7 Abstracted CPLEX Output for Messed Up Problem

Panel A Results from Default CPLEX Version

**** SOLVER STATUS ERROR SYSTEM FAILURE
**** MODEL STATUS ERROR NO SOLUTION
Starting CPLEX...
Column 'x26' set to infinite upper bound.
Presolve Time = 0.00 sec.
No solution exists.
*** Error in reporting the solution
**** USER ERROR(S) ENCOUNTERED

Panel B Results from CPLEX with PreSolve Suppressed
**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 4 INFEASIBLE

Problem is infeasible.

---- EQU RESOUREQ RESOURCES AVAILABLE
 LOWER LEVEL UPPER MARGINAL
PLANT1.SMLLATHE -INF . -1100.000 -0.059 INFES
PLANT1.LRGLATHE -INF . -880.000 -0.067 INFES
PLANT1.CARVER -INF . -500.000 -0.100 INFES
PLANT1.LABOR -INF . -1750.000 -0.091 INFES
PLANT1.TOP -INF . -500.000 -1.000 INFES
PLANT2.SMLLATHE -INF . -1400.000 -0.059 INFES
PLANT2.LRGLATHE -INF . -900.000 -0.067 INFES
PLANT2.CARVER -INF . -1200.000 -0.100 INFES
PLANT2.LABOR -INF . -1250.000 -0.091 INFES
PLANT2.TOP -INF . . .

Panel C Results from CPLEX with PreSolve Suppressed and IIS Enabled

**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 4 INFEASIBLE
Problem is infeasible.
IIS found. An IIS is a set equations and variable bounds (ie a submodel) which
is infeasible but becomes feasible if any one equation or variable bound
is dropped. A problem may contain several independant IISs but only one
will be found per run.

Number of equations in the IIS: 1.
 upper: RESOUREQ(PLANT2,LABOR) < -113.636

Number of variables in the IIS: 8.
 lower: MAKE(PLANT2,TABLES,NORMAL,FUNCT) > 0
 lower: MAKE(PLANT2,TABLES,NORMAL,FANCY) > 0
 lower: MAKE(PLANT2,CHAIRS,NORMAL,FUNCT) > 0
 lower: MAKE(PLANT2,CHAIRS,NORMAL,FANCY) > 0
 lower: MAKE(PLANT2,CHAIRS,MAXSML,FUNCT) > 0
 lower: MAKE(PLANT2,CHAIRS,MAXSML,FANCY) > 0
 lower: MAKE(PLANT2,CHAIRS,MAXLRG,FUNCT) > 0
 lower: MAKE(PLANT2,CHAIRS,MAXLRG,FANCY) > 0

8-35

Table 8.8 Abstracted OSL Output for Messed Up Problem

Panel A Results under default setup

**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 4 INFEASIBILITY

**** PRESOLVE detected that model is infeasible

**** ERRORS(S) IN EQUATION RESOUREQ(PLANT1,SMLLATHE)
**** ERRORS(S) IN EQUATION RESOUREQ(PLANT1,LRGLATHE)
**** ERRORS(S) IN EQUATION RESOUREQ(PLANT1,CARVER)
**** ERRORS(S) IN EQUATION RESOUREQ(PLANT1,LABOR)
**** ERRORS(S) IN EQUATION RESOUREQ(PLANT1,TOP)
**** ERRORS(S) IN EQUATION RESOUREQ(PLANT2,SMLLATHE)
**** ERRORS(S) IN EQUATION RESOUREQ(PLANT2,LRGLATHE)
**** ERRORS(S) IN EQUATION RESOUREQ(PLANT2,CARVER)
**** ERRORS(S) IN EQUATION RESOUREQ(PLANT2,LABOR)
**** ERRORS(S) IN VARIABLE MAKE(PLANT1,TABLES,NORMAL,FUNCT)
**** ERRORS(S) IN VARIABLE MAKE(PLANT1,TABLES,NORMAL,FANCY)
**** ERRORS(S) IN VARIABLE MAKE(PLANT1,CHAIRS,NORMAL,FUNCT)
**** ERRORS(S) IN VARIABLE MAKE(PLANT1,CHAIRS,NORMAL,FANCY)
**** ERRORS(S) IN VARIABLE MAKE(PLANT1,CHAIRS,MAXSML,FUNCT)
**** ERRORS(S) IN VARIABLE MAKE(PLANT1,CHAIRS,MAXSML,FANCY)
**** ERRORS(S) IN VARIABLE MAKE(PLANT1,CHAIRS,MAXLRG,FUNCT)
**** ERRORS(S) IN VARIABLE MAKE(PLANT1,CHAIRS,MAXLRG,FANCY)
**** ERRORS(S) IN VARIABLE MAKE(PLANT2,TABLES,NORMAL,FUNCT)
**** ERRORS(S) IN VARIABLE MAKE(PLANT2,TABLES,NORMAL,FANCY)
**** ERRORS(S) IN VARIABLE MAKE(PLANT2,CHAIRS,NORMAL,FUNCT)
**** ERRORS(S) IN VARIABLE MAKE(PLANT2,CHAIRS,NORMAL,FANCY)
**** ERRORS(S) IN VARIABLE MAKE(PLANT2,CHAIRS,MAXSML,FUNCT)
**** ERRORS(S) IN VARIABLE MAKE(PLANT2,CHAIRS,MAXSML,FANCY)
**** ERRORS(S) IN VARIABLE MAKE(PLANT2,CHAIRS,MAXLRG,FUNCT)
**** ERRORS(S) IN VARIABLE MAKE(PLANT2,CHAIRS,MAXLRG,FANCY)

8-36

Panel B Results with PreSolve Supressed

**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 4 INFEASIBLE
**** OBJECTIVE VALUE 0.0000
---- EQU RESOUREQ RESOURCES AVAILABLE
 LOWER LEVEL UPPER MARGINAL
PLANT1.SMLLATHE -INF . -1100.000 . INFES
PLANT1.LRGLATHE -INF . -880.000 . INFES
PLANT1.CARVER -INF . -500.000 . INFES
PLANT1.LABOR -INF . -1750.000 . INFES
PLANT1.TOP -INF . -500.000 . INFES
PLANT2.SMLLATHE -INF . -1400.000 . INFES
PLANT2.LRGLATHE -INF . -900.000 . INFES
PLANT2.CARVER -INF . -1200.000 . INFES
PLANT2.LABOR -INF . -1250.000 . INFES
PLANT2.TOP -INF . . .
**** REPORT SUMMARY : 0 NONOPT
 9 INFEASIBLE (INFES)
 0 UNBOUNDED

8-37

Table 8.9 Typical Output with Unbounded Model

**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 3 UNBOUNDED
**** OBJECTIVE VALUE 0.0000

 Model is unbounded

**** ERRORS(S) IN VARIABLE TRNSPORT(CHAIRS,FUNCT,PLANT1,PLANT2)
 1 INSTANCE OF - Unbounded variable
---- VAR TRNSPORT NUMBER OF ITEMS TRANSPORTED
 LOWER LEVEL UPPER MARGINAL

TABLES.FUNCT.PLANT1.PLANT2 . . +INF .
TABLES.FANCY.PLANT1.PLANT2 . . +INF .
CHAIRS.FUNCT.PLANT1.PLANT2 . . +INF 97.750 UNBND
CHAIRS.FUNCT.PLANT2.PLANT1 . . +INF -5.000 NOPT
CHAIRS.FANCY.PLANT1.PLANT2 . . +INF .
CHAIRS.FANCY.PLANT2.PLANT1 . . +INF 111.667

8-38

Table 8.10 Conditions under which Analysis will Advise of Potential Difficulty for
Equations

Type of
Constraint

Sign of
Coefficient

on
Nonnegative
Variables

Sign of
Coefficient

on
Nonpositive
Variables

Sign of
Coefficient

on
Unrestricted
Variables

Sign of
RHS

Type of
PCa/ Exampleb/

#

+ - + - + -

$ 0c/ 0 0 $ 0c/ 0 0 0 Zero
Variables -

Case 1

 x # 0 f/

-y # 0
 x - y # 0

$ 0 0 0 $0 0 0 - Infeasible
-PS Case 2

 x # - k
-y # - k
x - y # - k

0 $ 0 $ 0 0 0 0 + or 0d/ Redundant -
PS Case 3

-x # + k
 y # + k
-x + y # + k

0

$ 0 0 0 $ 0 0 0 0 Zero
Variables -

Case 1

 x = 0
-y = 0
x - y = 0

0 $ 0 $ 0 0 0 0 0 Zero
Variables -

Case 1

-x = 0
 y = 0
-x + y = 0

$ 0 0 $ 0 0 - Infeasible
-PS Case 2

 x = -k
-y = -k

0 $ $ 0 0 0 + Infeasible
-PS Case 2

-x = k
 y = k

0 0 0 0 +f -f 0 Zero
Variable

x=0

$

$ 0 0 0 $ 0 0 0 - or 0d/ Redundant -
PS Case 3

 x $ - k
-y $ - k
x - y $ - k

0 $ 0 $ 0 0 0 0 0 or + Infeasible
-PS Case 2

-x $ + k
 y $ + k
-x + y $ + k

0 $0 $0 0 0 0 0 Zero
Variables -

Case 1

-x $ 0
 y $ 0
-x + y $ 0

a/ The PS cases indicate, because the variables in this equation follow this pattern, that:

1. The variables appearing with nonzeros in this equation are forced to equal zero.
2. This equation can never be satisfied and is obviously infeasible.
3. This equation is redundant. The nonnegativity conditions are a stronger

restriction.

b/ In the examples let x = non-negative variables
y = non-positive variables

C/ In this case (and a number of the cases below) one or the other set of coefficients would have
to be nonempty.

d/ In this case all zeros in the matrix would generate a warning provided the RHS was nonzero.

e/ This and the entries below give examples of the problem covered by each warning. Namely, in the
first case examining only the nonnegative variables suppose all the non-negative variables have
signs $ 0 but the right-hand-side is zero. Thus, we have X $ 0 and X # 0 which implies X = 0.
A warning is generated in that case.

f/ Only one coefficient is allowed.

8-39

Table 8.11 Conditions under which Analysis will Advise about Potential Difficulties for Variables
in a Maximum Problem.

Type of
Variable

Objective
function

coefficient
sign

Sign of
aij's in $

rows
Number of aij's

in = rows
Number of aij's

in # rows

PSa/ Examples+ - + - + -

Nonnegative

+ $ 0 0 0 0 0 $ 0 Unbounded
Variable

case 1

max xb/

x $ a
-x # b

- 0 $ 0 0 0 $ 0 0 Zero
optimal

solution
case 2

max -x
-x $ a
x # b

0 $0 0 0

0 0 $0 Variable
Relaxes

constraint
case 3

max ox
x $a

-x # b

0 $0 0 $ 0c

$ 0c 0 $0 Variable
Relaxes

constraint
case 4

max ox
x $a

-x # b
DZ+x = g

Nonpositive

+ $ 0 0 0 0 0 $ 0 Zero
optimal

solution
case 2

max y
y $ a

-y # b

- 0 $ 0 0 0 $ 0 0 Unbounded
Variable

case 1

max -y
-y $ a
y # b

0 0 $ 0 0 0 $ 0 0 Variable
Relaxes

constraint
case 3

max oy
-y $a
y # b

0 0 $ 0 $ 0c $ 0c $ 0 0 Variable
Relaxes

constraint
case 4

max oy
-y $a
y # b

DZ+y = g

Unrestricted +/- 0 0 0 0 0 0 Unbounded
Variable

case 1

max ± z

a/ PS cases are:
The variables which satisfy this condition are:
1) Obviously unbounded as they can be increased to infinity contributing to the objective

function while satisfying the constraints.
2) Obviously zero since they consume constraint resources and have a cost in the objective

function.
3) Warning this variable relaxes all constraints in which it appears
4) Warning this variable relaxes all the equality constraints in which it appears in one

direction

b/ This example shows x has a positive term in the objective and can be increased without ever
violating any constraints so x is unbounded.

c/ Only one coefficient can be present in the equality rows

a/ Types of warnings are:
The variables which satisfy this condition are:
1) Obviously unbounded as they can be increased to infinity contributing to the objective

function while satisfying the constraints.
2) Obviously zero since they consume constraint resources and have a cost in the objective

function.
b/ This example shows x has a positive term in the objective and can be increased without ever

violating any constraints so x is unbounded.

8-40

Table 8-12 Conditions for Potential Infeasibility or Redundancy in Equations Based on Bounds of Variables

TYPE OF CONSTRAINT PS
≤ b ≥ b

SUM OF THE SMALLEST VALUEa > b --- INFEASIBLE
--- > b REDUNDANT

SUM OF THE LARGEST VALUEb --- < b INFEASIBILE
< b --- REDUNDANT

Note:
a. Suppose Xj is bounded as follows, LBj (lower bound) ≤ Xj ≤UBj (upper bound), and the sum is either >b or <b, then this
will be the smallest value which could happen in that sum. If the constraint is ≤b, then if S>b, we know that this constraint
will never be satisfied. In the constraint is ≥b, then if S>b, we know that this constraint will not limit any possible X value.
Hence, it is redundant.

b. Suppose Xj is bounded as follows, LBj (lower bound) ≤ Xj ≤UBj (upper bound), and we have the sum which is either >b or
<b, then this will be the largest value which could happen in that sum. If the constraint is ≤b, if L<b, we know that this
constraint will not limit any possible X value. Hence, it is redundant. In the constraint is ≥b, then if L<b, we know that this
constraint will never be satisfied.

c.Thanks to Paul Preckel for bringing these tests to the authors’ attention.

8-41

Table 8.13 GAMSCHK Analysis Output for Throughly Messed Up Example

 ----#### Executing ANALYSIS

 ----### Analysis of Variables (treating nonlinear terms at their starting p

**** ERROR These variables are unbounded -- they
 have a desirable objective function coeffic
 all 0 or + coefficients in the =G= rows
 all 0 or - coefficients in the =L= rows
 and no coefficients in the =E= rows

 ## TRNSPORT(TABLES,FUNCT,PLANT1,PLANT2)
 TRNSPORT(TABLES,FANCY,PLANT1,PLANT2)
 TRNSPORT(CHAIRS,FUNCT,PLANT1,PLANT2)
 TRNSPORT(CHAIRS,FUNCT,PLANT2,PLANT1)
 TRNSPORT(CHAIRS,FANCY,PLANT1,PLANT2)
 TRNSPORT(CHAIRS,FANCY,PLANT2,PLANT1)

----### Analysis of Equations (treating nonlinear terms at their starting poin

 **** ERROR This =L= constr. causes an infeasible model
 since the nonnegative variables present
 have only 0 or + coefficients
 the nonpositive variables present
 have only 0 or - coefficents
 the unrestricted variables
 have only zero coefficients
 and the RHS is negative

 ## RESOUREQ(PLANT1,SMLLATHE)
 RESOUREQ(PLANT1,LRGLATHE)
 RESOUREQ(PLANT1,CARVER)
 RESOUREQ(PLANT1,LABOR)
 RESOUREQ(PLANT1,TOP)
 RESOUREQ(PLANT2,SMLLATHE)
 RESOUREQ(PLANT2,LRGLATHE)
 RESOUREQ(PLANT2,CARVER)
 RESOUREQ(PLANT2,LABOR)
 **** Warning This =L= constraint causes all
 variables in it to have a zero solution value
 since the nonnegative variables present
 have only 0 or + coefficients
 the nonpositive variables present
 have only 0 or - coefficents
 the unrestricted variables
 have only zero coefficients
 and the rhs is zero.

 ## RESOUREQ(PLANT2,TOP)

8-42

Table 8.14 Picture of Basic Example

Panel B - Model Schematic
 T T T T T T S S S S N R
 | R R R R R R E E E E E H
 | N N N N N N L L L L T S P N
 | S S S S S S L L L L I O E R
 | P P P P P P N C S G O
 | O O O O O O C O I A A A W
 | M A K E - M A K E - M A K E R R R R R R O E T I T I C
 | T T T T T T M F I J J N
 | E F V , V , T
 | S E S E S S
 | 1 1 1 1 1
 | 1 2 3 4 5 6 7 8 9 0 1 2 3 4 1 2 3 4 5 6 1 2 3 4 1
 --
 OBJT 1| E F E E E E E E E E E E E E E E D D D D 6 6 6 6 C = 0 2 1 4 2 5
 RESOUREQ 1| D E E E D D < G 6 0 6
 RESOUREQ 2| D D D D E E < F 6 0 6
 RESOUREQ 3| D E D E D E < F 6 0 6
 RESOUREQ 4| D D E D E D E D < G 8 0 8
 RESOUREQ 5| C C < F 2 0 2
 RESOUREQ 6| D E E E D D < G 6 0 6
 RESOUREQ 7| D D D D E E < F 6 0 6
 RESOUREQ 8| D E D E D E < G 6 0 6
 RESOUREQ 9| E D E D E D < G 6 0 6
 PLANTPROD 1| 3 C C < 0 2 1 3
 PLANTPROD 2| 3 C C < 0 2 1 3
 PLANTPROD 3| 3 3 3 C 3 D < 0 2 4 6
 PLANTPROD 4| 3 3 3 C 3 D < 0 2 4 6
 PLANTPROD 5| 3 C < 0 1 1 2
 PLANTPROD 6| 3 C < 0 1 1 2
 PLANTPROD 7| 3 3 3 3 C D < 0 2 4 6
 PLANTPROD 8| 3 3 3 3 C D < 0 2 4 6
 --
 POSITIVE | 3 5 5 5 5 5 5 2 2 2 2 2 1
 COLUMN CTS | 3 5 5 5 5 5 5 2 2 2 2 2
 NEGATIVE | 1 1 1 1 1 1 1 1 1 1 1 1 0
 COLUMN CTS | 1 1 1 1 1 1 1 1 1 1 1 1
 COLUMN | 4 6 6 6 6 6 6 3 3 3 3 3 1
 COUNTS | 4 6 6 6 6 6 6 3 3 3 3 3
 --

PANEL A - COEFFICIENT CODES

 LOWER BOUND CODE UPPER BOUND
 (INCLUSIVE) (LESS THAN)
 1000.00000 G +INFINITY
 100.00000 F 1000.00000
 10.00000 E 100.00000
 1.00000 D 10.00000
 1.00000 C 1.00000
 0.50000 B 1.00000
 0.00000 A 0.50000
 0.00000 0 0.00000
 -0.50000 1 0.00000
 -1.00000 2 -0.50000
 -1.00000 3 -1.00000
 -10.00000 4 -1.00000
 -100.00000 5 -10.00000
 -1000.00000 6 -100.00000
 -INFINITY 7 -1000.00000

Panel C - ### Dictionary of Variables

8-43

 M 1: MAKE(PLANT1,TABLES,NORMAL,FUNCT)
 A 2: MAKE(PLANT1,TABLES,NORMAL,FANCY)
 K 3: MAKE(PLANT1,CHAIRS,NORMAL,FUNCT)
 E 4: MAKE(PLANT1,CHAIRS,NORMAL,FANCY)
 - 5: MAKE(PLANT1,CHAIRS,MAXSML,FUNCT)
 M 6: MAKE(PLANT1,CHAIRS,MAXSML,FANCY)
 A 7: MAKE(PLANT1,CHAIRS,MAXLRG,FUNCT)
 K 8: MAKE(PLANT1,CHAIRS,MAXLRG,FANCY)
 E 9: MAKE(PLANT2,CHAIRS,NORMAL,FUNCT)
 - 10: MAKE(PLANT2,CHAIRS,NORMAL,FANCY)
 M 11: MAKE(PLANT2,CHAIRS,MAXSML,FUNCT)
 A 12: MAKE(PLANT2,CHAIRS,MAXSML,FANCY)
 K 13: MAKE(PLANT2,CHAIRS,MAXLRG,FUNCT)
 E 14: MAKE(PLANT2,CHAIRS,MAXLRG,FANCY)
 TRNSPORT 1: TRNSPORT(TABLES,FUNCT,PLANT1,PLANT2)
 TRNSPORT 2: TRNSPORT(TABLES,FANCY,PLANT1,PLANT2)
 TRNSPORT 3: TRNSPORT(CHAIRS,FUNCT,PLANT1,PLANT2)
 TRNSPORT 4: TRNSPORT(CHAIRS,FUNCT,PLANT2,PLANT1)
 TRNSPORT 5: TRNSPORT(CHAIRS,FANCY,PLANT1,PLANT2)
 TRNSPORT 6: TRNSPORT(CHAIRS,FANCY,PLANT2,PLANT1)

 SELL 1: SELL(PLANT1,FUNCT)
 SELL 2: SELL(PLANT1,FANCY)
 SELL 3: SELL(PLANT2,FUNCT)
 SELL 4: SELL(PLANT2,FANCY)
 NETINCOME 1: NETINCOME

 Panel D ----### Dictionary of Equations

OBJT 1: OBJT
RESOUREQ 1: RESOUREQ(PLANT1,SMLLATHE)
RESOUREQ 2: RESOUREQ(PLANT1,LRGLATHE)
RESOUREQ 3: RESOUREQ(PLANT1,CARVER)
RESOUREQ 4: RESOUREQ(PLANT1,LABOR)
RESOUREQ 5: RESOUREQ(PLANT1,TOP)
RESOUREQ 6: RESOUREQ(PLANT2,SMLLATHE)
RESOUREQ 7: RESOUREQ(PLANT2,LRGLATHE)
RESOUREQ 8: RESOUREQ(PLANT2,CARVER)
RESOUREQ 9: RESOUREQ(PLANT2,LABOR)
PLANTPROD 1: PLANTPROD(PLANT1,TABLES,FUNCT)
PLANTPROD 2: PLANTPROD(PLANT1,TABLES,FANCY)
PLANTPROD 3: PLANTPROD(PLANT1,CHAIRS,FUNCT)
PLANTPROD 4: PLANTPROD(PLANT1,CHAIRS,FANCY)
PLANTPROD 5: PLANTPROD(PLANT2,TABLES,FUNCT)
PLANTPROD 6: PLANTPROD(PLANT2,TABLES,FANCY)
PLANTPROD 7: PLANTPROD(PLANT2,CHAIRS,FUNCT)
PLANTPROD 8: PLANTPROD(PLANT2,CHAIRS,FANCY)

8-44

 Table 8.15 Picture of Thoroughly Messed Up Example

 S S S S N R
 | E E E E E H
 | L L L L T S P N
 | L L L L I O E R
 | N C S G O
 | C O I A A A W
 | M A K E - M A K E - M A K E - M A K E - M A K E T R N S P O R T - T R N S P O R O E T I T I C
 | M F I J J N
 | E F V , V , T
 | S E S E S S
 | 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1
 | 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 1 2 3 4 1

 OBJT 1| E F E E E E E E E F E E E E E E 5 5 4 4 4 4 6 6 6 6 C = 0 1 7 1 0 2 7
 R 1| D E E E D D < 7 6 0 6
 E 2| D D D D E E < 6 6 0 6
 S 3| D E D E D E < 6 6 0 6
 O 4| D D E D E D E D < 7 8 0 8
 U 5| C C < 6 2 0 2
 R 6| D E E E D D < 7 6 0 6
 E 7| D D D D E E < 6 6 0 6
 Q 8| D E D E D E < 7 6 0 6
 - 9| D D E D E D E D < 7 8 0 8
 R 10| C C < 0 2 0 2
 PLANTPROD 1| 3 3 3 3 3 C < 0 1 5 6
 PLANTPROD 2| 3 3 3 3 3 C < 0 1 5 6
 PLANTPROD 3| 3 3 3 3 3 D < 0 1 5 6
 PLANTPROD 4| 3 3 3 3 3 D < 0 1 5 6
 PLANTPROD 5| 3 3 3 3 3 C < 0 1 5 6
 PLANTPROD 6| 3 3 3 3 3 C < 0 1 5 6
 PLANTPROD 7| 3 3 3 3 3 D < 0 1 5 6
 PLANTPROD 8| 3 3 3 3 3 D < 0 1 5 6

 POSITIVE | 3 0 0 5 5 5 3 0 0 5 5 5 0 0 0 0 0 0 0 0 2 2 1
 COLUMN CTS | 3 0 0 5 5 5 3 0 0 5 5 5 0 0 0 0 0 0 0 0 2 2
 NEGATIVE | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 0
 COLUMN CTS | 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 1 1
 COLUMN | 4 1 1 6 6 6 4 1 1 6 6 6 1 1 1 1 1 2 1 2 3 3 1
 COUNTS | 4 1 1 6 6 6 4 1 1 6 6 6 2 1 2 1 2 1 2 1 3 3

8-45

Table 8.14 Picture of Thoroughly Messed Up Example (continued)

Panel C----### Dictionary of Variables
 M 1: MAKE(PLANT1,TABLES,NORMAL,FUNCT)
 A 2: MAKE(PLANT1,TABLES,NORMAL,FANCY)
 K 3: MAKE(PLANT1,TABLES,MAXSML,FUNCT)
 E 4: MAKE(PLANT1,TABLES,MAXSML,FANCY)
 - 5: MAKE(PLANT1,TABLES,MAXLRG,FUNCT)
 M 6: MAKE(PLANT1,TABLES,MAXLRG,FANCY)
 A 7: MAKE(PLANT1,CHAIRS,NORMAL,FUNCT)
 K 8: MAKE(PLANT1,CHAIRS,NORMAL,FANCY)
 E 9: MAKE(PLANT1,CHAIRS,MAXSML,FUNCT)
 - 10: MAKE(PLANT1,CHAIRS,MAXSML,FANCY)
 M 11: MAKE(PLANT1,CHAIRS,MAXLRG,FUNCT)
 A 12: MAKE(PLANT1,CHAIRS,MAXLRG,FANCY)
 K 13: MAKE(PLANT2,TABLES,NORMAL,FUNCT)
 E 14: MAKE(PLANT2,TABLES,NORMAL,FANCY)
 - 15: MAKE(PLANT2,TABLES,MAXSML,FUNCT)
 M 16: MAKE(PLANT2,TABLES,MAXSML,FANCY)
 A 17: MAKE(PLANT2,TABLES,MAXLRG,FUNCT)
 K 18: MAKE(PLANT2,TABLES,MAXLRG,FANCY)
 E 19: MAKE(PLANT2,CHAIRS,NORMAL,FUNCT)
 - 20: MAKE(PLANT2,CHAIRS,NORMAL,FANCY)
 M 21: MAKE(PLANT2,CHAIRS,MAXSML,FUNCT)
 A 22: MAKE(PLANT2,CHAIRS,MAXSML,FANCY)
 K 23: MAKE(PLANT2,CHAIRS,MAXLRG,FUNCT)
 E 24: MAKE(PLANT2,CHAIRS,MAXLRG,FANCY)
 T 1: TRNSPORT(TABLES,FUNCT,PLANT1,PLANT1)
 R 2: TRNSPORT(TABLES,FUNCT,PLANT1,PLANT2)
 N 3: TRNSPORT(TABLES,FUNCT,PLANT2,PLANT1)
 S 4: TRNSPORT(TABLES,FUNCT,PLANT2,PLANT2)
 P 5: TRNSPORT(TABLES,FANCY,PLANT1,PLANT1)
 O 6: TRNSPORT(TABLES,FANCY,PLANT1,PLANT2)
 R 7: TRNSPORT(TABLES,FANCY,PLANT2,PLANT1)
 T 8: TRNSPORT(TABLES,FANCY,PLANT2,PLANT2)
 - 9: TRNSPORT(CHAIRS,FUNCT,PLANT1,PLANT1)
 T 10: TRNSPORT(CHAIRS,FUNCT,PLANT1,PLANT2)
 R 11: TRNSPORT(CHAIRS,FUNCT,PLANT2,PLANT1)
 N 12: TRNSPORT(CHAIRS,FUNCT,PLANT2,PLANT2)
 S 13: TRNSPORT(CHAIRS,FANCY,PLANT1,PLANT1)
 P 14: TRNSPORT(CHAIRS,FANCY,PLANT1,PLANT2)
 O 15: TRNSPORT(CHAIRS,FANCY,PLANT2,PLANT1)
 R 16: TRNSPORT(CHAIRS,FANCY,PLANT2,PLANT2)
 SELL 1: SELL(PLANT1,FUNCT)
 SELL 2: SELL(PLANT1,FANCY)
 SELL 3: SELL(PLANT2,FUNCT)
 SELL 4: SELL(PLANT2,FANCY)
 NETINCOME 1: NETINCOME

Panel D----### Dictionary of Equations
 OBJT 1: OBJT
 R 1: RESOUREQ(PLANT1,SMLLATHE)
 E 2: RESOUREQ(PLANT1,LRGLATHE)
 S 3: RESOUREQ(PLANT1,CARVER)
 O 4: RESOUREQ(PLANT1,LABOR)
 U 5: RESOUREQ(PLANT1,TOP)
 R 6: RESOUREQ(PLANT2,SMLLATHE)
 E 7: RESOUREQ(PLANT2,LRGLATHE)
 Q 8: RESOUREQ(PLANT2,CARVER)
 - 9: RESOUREQ(PLANT2,LABOR)
 R 10: RESOUREQ(PLANT2,TOP)
 PLANTPROD 1: PLANTPROD(PLANT1,TABLES,FUNCT)
 PLANTPROD 2: PLANTPROD(PLANT1,TABLES,FANCY)
 PLANTPROD 3: PLANTPROD(PLANT1,CHAIRS,FUNCT)
 PLANTPROD 4: PLANTPROD(PLANT1,CHAIRS,FANCY)
 PLANTPROD 5: PLANTPROD(PLANT2,TABLES,FUNCT)
 PLANTPROD 6: PLANTPROD(PLANT2,TABLES,FANCY)
 PLANTPROD 7: PLANTPROD(PLANT2,CHAIRS,FUNCT)
 PLANTPROD 8: PLANTPROD(PLANT2,CHAIRS,FANCY)

8-46

Table 8.16 PICTURE for Selected Submatrix
 | R
 | H
 | S P N
 | O E R
 | C S G O
 | O I A A A W
 | M A K E - M A K E - M A K E - M A K E - M A K E E T I T I C
 | F I J J N
 | F V , V , T
 | S E S E S S
 | 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
 | 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
 --
 R 1| D E E E D D < 7 6 0 6
 E 2| D D D D E E < 6 6 0 6
 S 3| D E D E D E < 6 6 0 6
 O 4| D D E D E D E D < 7 8 0 8
 U 5| C C < 6 2 0 2
 R 6| D E E E D D < 7 6 0 6
 E 7| D D D D E E < 6 6 0 6
 Q 8| D E D E D E < 7 6 0 6
 - 9| D D E D E D E D < 7 8 0 8
 R 10| C C < 0 2 0 2
 --
 POSITIVE | 2 0 0 4 4 4 2 0 0 4 4 4
 COLUMN CTS | 2 0 0 4 4 4 2 0 0 4 4 4
 NEGATIVE | 0 0 0 0 0 0 0 0 0 0 0 0
 COLUMN CTS | 0 0 0 0 0 0 0 0 0 0 0 0
 COLUMN | 2 0 0 4 4 4 2 0 0 4 4 4
 COUNTS | 2 0 0 4 4 4 2 0 0 4 4 4
 --

8-47

Table 8.17 BLOCKPIC Output

Panel A. Aggregate Block Picture
 | N |
 | T E |
 | R T |
 | N I |
 | S N |
 | M P S C |
 | A O E O | R
 | K R L M | H
 | E T L E | S

 OBJT | + - - + | E 0
 RESOUREQ | + | L -
 PLANTPROD | - - + | L 0

 Variable Typ | + + + u

Panel B. Picture Giving Number of Coefficients by Block -- Strip 1

 | | C #
 | N | o
 | T E | e o
 | R T | f f
 | N I | f
 | S N |
 | M P S C | C E
 | A O E O | R n q
 | K R L M | H t n
 | E T L E | S s s

 OBJT | 16+ 1+ | E 17+ 1
 | 6- 4- | 10-
 RESOUREQ | 56+ | L 56+ 10
 | | 9-
 PLANTPROD | 8+ | L 8+ 8
 | 24- 16- | 40-

 Coeff Cnts | 72+ 8+ 1+ | 81+
 | 24- 22- 4- | 9- 50-
 # of Vars | 24 16 4 1 |
 Variable Typ | >=0 >=0 >=0 <0>

8-48

Panel C. Picture Giving Average Number of Coefficients by Column Block

 | C #
 | N f
 | T E s o
 | R T f
 | N I P
 | S N e
 | M P S C r E
 | A O E O R E q
 | K R L M H q n
 | E T L E S u s

 OBJT | 0.667+ 1+ | E 17+ 1
 | 0.375- 1- | 10-
 RESOUREQ | 2.333+ | L 5+ 10
 | | 9-
 PLANTPROD | 2+ | L 1+ 8
 | 1- 1- | 5-

 Cfs PerVar | 3+ 2+ 1+ |
 | 1- 1.375- 1- |
 # of Vars | 24 16 4 1
 Var Type | >=0 >=0 >=0 <0>

Panel D. Scaling Data - Maximum & Minimum Coefficients by Block
 | R E
 | N H q
 | T E S u
 | R T
 | N I M M
 | S N a a
 | M P S C x x
 | A O E O M M
 | K R L M i i
 | E T L E n n
 --
 OBJT Max| 100 18 850 1 850
 Min| 15 5 400 1 1
 RESOUREQ Max| 17 1750 17
 Min| 1 500 1
 PLANTPROD Max| 1 1 6 6
 Min| 1 1 1 1
 --
 Total Var Max| 100 18 850 1 1750
 Min| 1 1 1 1 500

Panel E Analysis of Variables (treating nonlinear terms at their starting points)

**** ERROR These variables are unbounded -- they
 have a desirable objective function coeffic
 all 0 or + coefficients in the =G= rows
 all 0 or - coefficients in the =L= rows
 and no coefficients in the =E= rows
 ## TRNSPORT

Panel F Analysis of Equations (treating nonlinear terms at their starting points)

 **** ERROR This =L= constr. causes an infeasible model
 since the nonnegative variables present have only 0 or + coefficients
 the nonpositive variables present have only 0 or - coefficents
 the unrestricted variables have only zero coefficients
 and the RHS is negative
 ## RESOUREQ

8-49

Table 8.18 BLOCKPIC Aggregate Block Picture -- ASM Example

 | C L L |
 | R V A |
 | O S N A W W C D P D |
 | D I E D P T D A U P A A C E R I |
 | E M X E B B S U M R T T F N C F D V |
 | M P P M U U U M S O E E A H A L P N P |
 | A O O A D D P S P C R R M I M T O R 5 R A C T T |
 | N R R N G G P P R E F V I R I M A O 0 O R S O W | R
 | D T T D E E L U I S I A L E X I N D 9 D T P L I | H
 | P P P S T T Y B V S X R Y D R X P N 2 N S S R D | S
 --
 OBJT | - + - - m + + + + + + + + + - - - + + | E +
 MAXLAND | + + | L +
 MINLAND | + | G 0
 LAND | + + - | L 0
 AUMSR | + - - | L 0
 PUBAUMS | + | L +
 WATERR | + - - | L 0
 FIX | + | L +
 LABOR | + - - | L 0
 FAMILYLIM | + | L +
 HIRELIM | + | L +
 PRIMARYBAL | + - + - m + + - - | L 0
 SECONDBAL | + + - | L 0
 MIXREG | + - + | E 0
 MIXREGTOT | + - | E 0
 MIXNAT | + - + | E 0
 FRMPROG | - + | L 0
 P5092 | + | L 0
 DIVERT | + | L 0
 --
 Variable Typ | + u + +

8-50

Table 8.19 BLOCKLIST Output

 ----### List of Variable Block Characteristics

 Note Max and Min do not include Objective Row

 Variable Sign Numb Numb Pos Neg Nonl Maximum Minimum
 Block Res Vars Nonl Coef Coef Coef Absolute Absolute
 MAKE >=0 24 0 72 24 0 17.00 1.000
 TRNSPORT >=0 16 0 0 22 0 1.000 1.000
 SELL >=0 4 0 8 4 0 6.000 1.000
 NETINCOME <0> 1 0 1 0 0 0.0000E+000.0000E+00

 ----### List of Equation Block Characteristics

 Note Max and Min do not include RHS and Objective variable

 Equation Type Numb Numb Pos Neg Nonl Pos Neg Maximum Minimum
 Block Res Eqns Nonl Coef Coef Coef RHS RHS Absolute Absolute
 OBJT =E= 1 0 17 10 0 0 0 850.0 5.000
 RESOUREQ =L= 10 0 56 0 0 0 9 17.00 1.000
 PLANTPROD =L= 8 0 8 40 0 0 0 6.000 1.000

 ----### Analysis of Variables (nonlinear terms at current point)

**** ERROR These variables are unbounded -- they
 have a desirable objective function coeffic
 all 0 or + coefficients in the =G= rows
 all 0 or - coefficients in the =L= rows
 and no coefficients in the =E= rows
 ## TRNSPORT

 ----### Analysis of Equations

 **** ERROR This =L= constr. causes an infeasible model
 since the nonnegative variables present
 have only 0 or + coefficients
 the nonpositive variables present
 have only 0 or - coefficents
 the unrestricted variables
 have only zero coefficients
 and the RHS is negative
 ## RESOUREQ

8-51

TABLE 8.20 ABSTRACT DISPLAYCR OUTPUT(REPLACE SECOND HALF)

----### DISPLAYING EQUATIONS

 ## RESOUREQ(PLANT1,SMLLATHE)
 MAKE(PLANT1,CHAIRS,NORMAL,FUNCT) 8.0000
 MAKE(PLANT1,CHAIRS,NORMAL,FANCY) 12.000
 MAKE(PLANT1,CHAIRS,MAXSML,FUNCT) 13.000
 MAKE(PLANT1,CHAIRS,MAXSML,FANCY) 17.000
 MAKE(PLANT1,CHAIRS,MAXLRG,FUNCT) 2.0000
 MAKE(PLANT1,CHAIRS,MAXLRG,FANCY) 5.0000
 =L= -1100.0
 ## RESOUREQ(PLANT1,LRGLATHE)
 MAKE(PLANT1,CHAIRS,NORMAL,FUNCT) 5.0000
 MAKE(PLANT1,CHAIRS,NORMAL,FANCY) 7.0000
 MAKE(PLANT1,CHAIRS,MAXSML,FUNCT) 2.0000
 MAKE(PLANT1,CHAIRS,MAXSML,FANCY) 3.0000
 MAKE(PLANT1,CHAIRS,MAXLRG,FUNCT) 13.000
 MAKE(PLANT1,CHAIRS,MAXLRG,FANCY) 15.000
 =L= -880.00
 ## RESOUREQ(PLANT1,CARVER)
 MAKE(PLANT1,CHAIRS,NORMAL,FUNCT) 4.0000
 MAKE(PLANT1,CHAIRS,NORMAL,FANCY) 10.000
 MAKE(PLANT1,CHAIRS,MAXSML,FUNCT) 4.0000
 MAKE(PLANT1,CHAIRS,MAXSML,FANCY) 10.000
 MAKE(PLANT1,CHAIRS,MAXLRG,FUNCT) 4.0000
 MAKE(PLANT1,CHAIRS,MAXLRG,FANCY) 10.000
 =L= -500.00
 ## RESOUREQ(PLANT2,LABOR)
 MAKE(PLANT2,TABLES,NORMAL,FUNCT) 3.0000
 MAKE(PLANT2,TABLES,NORMAL,FANCY) 5.0000
 MAKE(PLANT2,CHAIRS,NORMAL,FUNCT) 10.000
 MAKE(PLANT2,CHAIRS,NORMAL,FANCY) 8.0000
 MAKE(PLANT2,CHAIRS,MAXSML,FUNCT) 11.000
 MAKE(PLANT2,CHAIRS,MAXSML,FANCY) 8.0000
 MAKE(PLANT2,CHAIRS,MAXLRG,FUNCT) 11.000
 MAKE(PLANT2,CHAIRS,MAXLRG,FANCY) 8.0000
 =L= -1250.0
 ## RESOUREQ(PLANT2,TOP)
 MAKE(PLANT2,TABLES,NORMAL,FUNCT) 1.0000
 MAKE(PLANT2,TABLES,NORMAL,FANCY) 1.0000
 =L=
0.00000E+00

8-52

TABLE 8.21 MATCHIT OUTPUT

----#### Executing MATCHIT
 Note Max and Min do not include Obj row coef
 Is Tot Pos Neg Nln Minimum Maximum
 ----### Requested Variables Non Cof Cof Cof Cof Absolute Absolute

 ----## VAR TRNSPORT

 TRNSPORT(TABLES,FUNCT,PLANT1,PLANT1) 0 1 0 1 0 1.000 1.000
 TRNSPORT(TABLES,FUNCT,PLANT1,PLANT2) 0 2 0 2 0 1.000 1.000
 TRNSPORT(TABLES,FUNCT,PLANT2,PLANT1) 0 1 0 1 0 1.000 1.000
 TRNSPORT(TABLES,FUNCT,PLANT2,PLANT2) 0 1 0 1 0 1.000 1.000
 TRNSPORT(TABLES,FANCY,PLANT1,PLANT1) 0 1 0 1 0 1.000 1.000
 TRNSPORT(TABLES,FANCY,PLANT1,PLANT2) 0 2 0 2 0 1.000 1.000
 TRNSPORT(TABLES,FANCY,PLANT2,PLANT1) 0 1 0 1 0 1.000 1.000
 TRNSPORT(TABLES,FANCY,PLANT2,PLANT2) 0 1 0 1 0 1.000 1.000
 TRNSPORT(CHAIRS,FUNCT,PLANT1,PLANT1) 0 1 0 1 0 1.000 1.000
 TRNSPORT(CHAIRS,FUNCT,PLANT1,PLANT2) 0 2 0 2 0 1.000 1.000
 TRNSPORT(CHAIRS,FUNCT,PLANT2,PLANT1) 0 2 0 2 0 1.000 1.000
 TRNSPORT(CHAIRS,FUNCT,PLANT2,PLANT2) 0 1 0 1 0 1.000 1.000
 TRNSPORT(CHAIRS,FANCY,PLANT1,PLANT1) 0 1 0 1 0 1.000 1.000
 TRNSPORT(CHAIRS,FANCY,PLANT1,PLANT2) 0 2 0 2 0 1.000 1.000
 TRNSPORT(CHAIRS,FANCY,PLANT2,PLANT1) 0 2 0 2 0 1.000 1.000
 TRNSPORT(CHAIRS,FANCY,PLANT2,PLANT2) 0 1 0 1 0 1.000 1.000

 Numb Numb Total Pos Neg Nonln
 ----### Variable Request Varia Nonln Coef Coef Coef Coef

 MAKE(PLANT2) 12 0 48 36 12 0
 TRNSPORT 16 0 22 0 22 0

 Note Max and Min do not include Rhs and Obj var coef

 Is Tot Pos Neg Nln Minimum Maximum
 ----### Requested Equations Non Cof Cof Cof Cof Absolute Absolute

 ----## EQU RESOUREQ

 RESOUREQ(PLANT1,SMLLATHE) 0 7 7 0 0 2.000 17.00
 RESOUREQ(PLANT1,LRGLATHE) 0 7 7 0 0 2.000 15.00
 RESOUREQ(PLANT1,CARVER) 0 7 7 0 0 3.000 10.00
 RESOUREQ(PLANT1,LABOR) 0 9 9 0 0 1.000 11.00
 RESOUREQ(PLANT1,TOP) 0 3 3 0 0 1.000 8.000
 RESOUREQ(PLANT2,SMLLATHE) 0 7 7 0 0 2.000 17.00
 RESOUREQ(PLANT2,LRGLATHE) 0 7 7 0 0 2.000 15.00
 RESOUREQ(PLANT2,CARVER) 0 7 7 0 0 3.000 10.00
 RESOUREQ(PLANT2,LABOR) 0 9 9 0 0 1.000 11.00
 RESOUREQ(PLANT2,TOP) 0 3 2 1 0 1.000 1.000

 ----## EQU PLANTPROD

 PLANTPROD(PLANT1,TABLES,FUNCT) 0 7 1 6 0 1.000 1.000
 PLANTPROD(PLANT1,TABLES,FANCY) 0 7 1 6 0 1.000 1.000
 PLANTPROD(PLANT1,CHAIRS,FUNCT) 0 7 1 6 0 1.000 4.000
 PLANTPROD(PLANT1,CHAIRS,FANCY) 0 7 1 6 0 1.000 6.000
 PLANTPROD(PLANT2,TABLES,FUNCT) 0 7 1 6 0 1.000 1.000
 PLANTPROD(PLANT2,TABLES,FANCY) 0 7 1 6 0 1.000 1.000
 PLANTPROD(PLANT2,CHAIRS,FUNCT) 0 7 1 6 0 1.000 4.000
 PLANTPROD(PLANT2,CHAIRS,FANCY) 0 6 1 5 0 1.000 6.000

 Numb Numb Total Pos Neg Nonln
 ----### Equation Request Equat Nonln Coef Coef Coef Coef

 RESOUREQ 10 0 66 65 1 0
 PLANTPROD(PLANT1) 4 0 28 4 24 0
 RES 19 0 149 91 58 0

9-1

Chapter 9 Post Solution Model Analysis

Unfortunately, regardless of how much care is taken when formulating and checking

models, cases occur when the solver terminates with a bad solution. The model may be found to

be unbounded, infeasible, or worst yet optimal, but with an unrealistic answer. In these cases, one

begins the sometimes arduous task of figuring out what is wrong. There are tools provided in

GAMS and in GAMSCHK to help in this process. This chapter covers approaches to such

problems using those tools.

The discussion is organized into three parts addressing models which terminate as:

1) infeasible; 2) unbounded; or 3) optimal, but with an unrealistic solution.

9.1 Correction of Models Which are Infeasible

Infeasibility is always a possible outcome when solving models. Linear programming

solvers handle infeasibility by going through a two or three step solution approach. First, there

may be some presolution calculations which may determine a model cannot be made feasible (as

done by the OSL and CPLEX PRESOLVE options). Second, there is usually a Phase I operation

wherein the sum of a set of implicitly added artificial variables is minimized. During this phase,

the problem is artificially rendered feasible. Third, if the artificial variable values are all driven to

zero, then the problem is declared feasible and the solver turns to the normal (Phase II) simplex

method proceeding toward optimally.

However, the problem may not go into phase II and be declared infeasible if the sum of

the artificial variables cannot be driven to zero. In such cases, the information content of the

differs between solvers and may not be very helpful. Rarely does this output give enough

information to directly diagnose and fix the cause of the infeasibility. Cases may even occur

9-2

where a PRESOLVE discovers infeasibility and the message is given that the problem has no

solution then the solver quits giving back no usable information to GAMS which in turn

terminates. Thus, the LST file may contain little information. More commonly, the solution part

of the LST file contains particular variables or equations tagged as infeasible with the marker

INFES (as in Table 8.7, Panel B). In addition when using ANALYSIS, some presolves and the

IIS procedures in CPLEX, there may be an identification of restrictions involved with the

infeasibility. Unfortunately, ANALYSIS and the presolves cannot always detect infeasibility

causes (Use of Chennicks IIS will always diagnose at least part of the problem). Thus, many

modelers will sometimes have to contend with a model that is infeasible without a great deal of

information on what is causing that condition.

9.1.1 Causes of Infeasible Models

 Causes of infeasibility are not always easily identified. Solvers may report a particular

equation as infeasible in cases where an entirely different equation is the cause. Consider the

following example (infe.gms),

Max 50X1 % 50X2

s.t. X1 % X2 # 50

50X1 % X2 # 65

X1 $ 20

X1 , X2 $ 0

In this example, the interaction between the constraint X1 $ 20, the constraint immediately above

it, and the nonnegativity condition on X2 render the model infeasible. There may be several

potential explanations as to why the infeasibility is present. The 65 on the right hand side of the

9-3

second constraint may be a data entry error, perhaps a number in excess of 1000 was intended.

Similarly, the 50 for X1 in the second constraint may be an error with a number more like 0.50 or

a negative entry intended. Third, the limit requiring X1 $ 20 may be misspecified with the RHS

really intended to be 0.20. Fourth, perhaps the X2 variable should have been allowed to be

negative. Fifth, there could be multiple errors involving several of the above cases. Runs with

OSL, CPLEX, BDMLP and MINOS5 resulted in the marking of either the X1 $ 20 or the second

constraint as the infeasible item. This may or may not be a proper identification of the problem

causing mistake. Generally, infeasibilities occur because of the interaction of multiple variables

and equation restrictions. In more complex models a set of 50 constraints could be involved.

Thus, we need procedures to find the involved set of variable and equation restrictions. In turn

we can look for the root cause of the infeasibility in the model subcomponent.

9.1.2 Finding Causes of Infeasibility -- Basic Theory

There are two approaches we will recommend for finding causes of an infeasibility. The

fist approach relies on “artificial” variables . The second is due to Chinneck and finds an

“irreducible infeasible system” - IIS. We will only briefly cover the IIS approach as it requires

special software and the only GAMS solver that incorporates it is CPLEX.

 The concept of an artificial variable is introduced in virtually every course or book which

treats linear programming algorithms. An artificial variable is a new variable added to an equation

to guarantee that the equation is “artificially” feasible. However, in order to attain real feasibility,

the model must be modified to provide an incentive to remove the artificial variables from the

solution. There are two ways such incentives are entered: through the “Big M” penalty method

or through the “Phase I/ Phase II” optimization approach.

9-4

Max 50X1 % 50X2 & 1000000000A

X1 % X2 # 50

50X1 % X2 # 65

X1 % A $ 20

X1 , X2 , A $ 0

Suppose we review the so called Big M method. In that case we augment the above

model with an artificial variable as follows (infeart.gms):

with A being the artificial variable. Such a variable would be entered for each model equation

which could not be satisfied by setting all the X’s to zero (i.e., X1 = 0 is not feasible in the X1 $

20 constraint). Each artificial has a very large, undesirable objective function coefficient (the so

called “Big M value”) and an entry in the potential infeasible equation which allows its

satisfaction. Such a variable “artificially” allows satisfaction of the equations, but at a very high

cost. Because of this large cost A is very unattractive, since the objective function cost of setting

A to 20 are far in excess of any possible objective function value involving the X’s. Thus, if at all

possible the solution process would drive A from the solution. However in the solution to this

problem the artificial cannot be driven from the basis. In turn the solver would indicate the

problem is infeasible. The Big M method is not used in solvers because of difficulties in

determining the appropriate magnitude of the objective function penalty and the potential

introduction of numerical instability.

Solvers virtually without exception employ the Phase I/Phase II solution method where

the artificial variables are implicitly (and automatically) added, then an auxiliary objective function

is used which minimizes the sum of the artificial variables during Phase I (possibly with some

9-5

weight attached to the real objective function). Once a feasible solution is found the solver drops

the artificials and optimizes the real objective function.

Under either case the general approach to solving potentially infeasible problems is to

introduce variables which “artificially” guarantee a feasible solution, then alter the objective

function to drive those variables out. Problems wherein the artificials cannot be driven to zero are

reported as infeasible.

9.1.3 Diagnosing Infeasible Solutions

Our contention is that we can use the information from a solution with artificials present

to diagnose the cause of the infeasibility. Suppose we illustrate this point by example.

 A GAMS formulation of the above problem including the artificial in both Big M and

Phase I implementations is given in Table 9.1, Panel A(infeart.gms). The resultant Big M solution

is given in Panel B, while Panel C contains the Phase I solution. In both cases, the artificial

variable is in the basis having a non-zero level of 18.7 indicating the model is infeasible.

The question then is: So what? When a linear programming is solved, the optimum

solution contains a number of output items which are influenced by the objective function

parameters from the basic variables. In particular the shadow prices, reduced costs and objective

function value are all a function of the objective function coefficients of the basic variables as

follows:

u=CB B-1

Zj-Cj = CB B-1A j- Cj

z= CBB-1b

where u is the vector of shadow prices for the model constraint equations also called the

9-6

marginals in gams;

 CB is the objective function coefficients for the basic variables ;

B-1 is the inverse of the basis matrix;

Zj-Cj is the reduced costs for the jth nonbasic variable also called the marginals for the

variables in GAMS ;

Aj is the coefficients in the constraint equations associated with the jth nonbasic variable;

Cj is the objective function coefficient associated with the jth nonbasic variable; and

b is the vector of right hand side coefficients.

The above formula for u is interpretable as the marginal rate of change in the objective function

when the right hand side on the constraint is altered (see McCarl and Spreen or Bazzara, Jarvis

and Sherali). The of Zj-Cj formula estimates the amount the objective function will change when

the nonbasic variable takes on a nonzero value. This can be interpreted as the shadow price on

the nonnegativity condition for the variable and thus the value of allowing the variable to take on

a negative value thereby relaxing the constraint. The objective function value is to simply a

number.

Now when artificial is in the basis, then relaxation of some of the right hand sides will

cause that artificial to become smaller. These constraints would have artificially large shadow

prices since in those cases right hand side relaxation greatly reduce the size of the optimal

objective function since the artificials generally form a large proportion of the optimal objective

function value. Similarly the reduced costs will be influenced by the presence of the artificial.

The solution marginal information also would similarly identify the constraints and variable

9-7

bounds associated with the infeasibility under a Phase I approach. In particular, the Phase I

shadow prices and reduced costs apply to the sum of the infeasibilities telling how much relaxing

the right hand sites or variable bounds would reduce the sum of the infeasibilities.

Thus the marginals (or in non GAMS terminology the shadow prices or dual variables and

reduced costs) reveal the constraints which are party to the infeasibility. Under the Big M

formulation the marginals for the variable X2 as well as the marginals for the second and third

constraints are very large showing data revisions therein would alter the solution level of the

artificial. Under the Phase I solution, the marginals are non-zero in the same places indicating that

alterations therein would reduce the sum of the infeasibilities. Thus, the solution contains the

signal that there is something wrong in the interaction of X2, the second constraint, and the third

constraint. In turn, a modeler would examine these items and the other associated variables to fix

the infeasibility. Hopefully, then the underlying error would be found.

The above material indicates two ways of finding the cause of infeasibilities. First, if the

solution reports back the Phase I shadow prices, then examine the variables and constraints

associated with those to find the cause of the infeasibility. Otherwise, set up the model with

artificials present, solve it and if the artificials appear in the solution, look for distorted shadow

prices and marginals to find the causal set of equations. One word of caution, this will always

identify some of the infeasibility causes, but in the face of a nonunique dual solution caused by

degeneracy or alternative optimals may not reveal them all. Thus, multiple applications of the

procedure may be needed.

9.1.4 Details on Artificial Variable Approach to Resolving Infeasibility

9-8

After one is taught about artificial variables, often the assertion is made that solvers

automatically add them and thus artificials are of no further concern. Unfortunately, when solvers

reach an infeasibility, the LST file does no always contain the Phase I marginal information. In

particular, some solvers give marginals solely from the original objective, not the Phase I objective

function. Thus, we recommend that those looking for infeasibility causes (in the absence of

specialized infeasibility finding procedures such as IIS) set up their own Big M or Phase I based

problem, solve it and then use the marginals to find the infeasibility causing set.

The following gives the steps in a Big M based, artificial variable based approach for

finding infeasibility causes.

Step 1 Identify the relevant equations and/or variable bounds for which artificials

are needed to be added (details about this in next section)

Step 2 Add artificial variables to those equations and bounds. These artificials

each have a Big M penalty in the objective function and an entry in a single

constraint.

Step 3 Solve the model

Step 4 Examine the model solution. Where the marginals (the reduced costs for

the variables and the shadow prices for the equations) are distorted by the

presence of the artificials, identify those as the variables and equations to

be examined for the cause of infeasibility

Step 5 Fix the model and repeat the process if needed

There are several questions inherent in the above procedure. In particular: Where should artificial

variables be added?; How should the artificial variables be structured?; and How does one find a

9-9

“distorted” marginal? Each is discussed below.

9.1.4.1 Where Should Artificial Variables be Added?

The places where artificial variables should be added can be determined in several ways.

One could look at the model solution and enter artificials in the equations and/or variable bounds

marked by the solver as infeasible. However, while this sometimes points to proper places, it

does not always do such. The approach advocated here is to add artificials in all possible

infeasible locations.

Programming models will only be infeasible when setting all the decision variables equal to

zero is not feasible. This occurs when: a) the interval between variable upper and lower bounds

does not include zero; or b) equations appear which are not satisfied when all variables are set to

zero. The equation cases which are not satisfied when the variables equal zero are:

1) Less than or equal to constraints with a negative right side i.e. x # -1

2) Greater than or equal to constraints with a positive right side. i.e. x $1

3) Equality constraints with a nonzero right side i.e. x = 1 or x = -1

In addition, when the interval between lower and upper bounds on a variable does not include

zero then those bounds need to be converted to constraints with artificials added. This will occur

when:

1) the lower bound is positive, or

2) the upper bound is negative

 The ADVISORY and NONOPT -- IDENTIFY procedures in GAMSCHK have been

written to create a list of all occurrences of these five cases. The output from these procedures

for the messed up model contained in Table 8.2, appears in Table 9.2. In that output the

9-10

RESOUREQ equations are identified as the potential places where infeasibility may occur. These

are the places where the artificial variables are needed.

9.1.4.2 Entering Artificial Variables in GAMS

Once one has found where the artificial variables need to be added one still has to address

the questions: How they should be added? and What should they look like? The following

general rules address this question. A new variable should be defined for each equation with the

same dimension as the infeasible cases in the equation. Thus, if artificials are added to an equation

defined with dimensions like RESOUREQ(PLANT,RESOURCE), then one should define a

variable like ARTRESOUR(PLANT,RESOURCE). Strictly speaking, such terms only need to be

added in the cases identified above. However, given the power of GAMS it may be easier to add

them to all cases for a named equation. The next question is how should the artificials be

structured. Artificials should be entered with a coefficient of plus or minus one in the potentially

infeasible equations. The sign of the coefficient depends on equation type. The artificials should

have one coefficient in just a single equation (along with the objective function entry) and the

coefficient in the equations should be a:

a) negative one in =L= (#) equations with negative RHS

b) plus one in =G= ($) equations with positive RHS

 c) plus or minus one with being the same as that of the RHS in =E= (=) equations

For example in our messed up problem we would add the artificial variables with negative one

coefficients to the RESOUREQ equations so the resultant equation appears as follows.

RESOUREQ(PLANT,RESOURCE)..
 SUM((PRODUCT,TYPE,METHOD)
 ,RES(RESOURCE,PRODUCT,TYPE,METHOD)
 *MAKE(PLANT,PRODUCT,METHOD,TYPE))
 -ARTRESOUR(PLANT,RESOURCE)

9-11

 =l= -RESORAVAIL(RESOURCE,PLANT) ;

Note, one cannot add an artificial into the GAMS upper and lower bound defined with the

variablename.LO, .UP or .FX syntax. Thus, one needs to convert positive LO, negative UP and

nonzero FX bounds into equations and then add the artificials. The LO, UP and FX conditions

need to be converted =G=, to =L= and =E= equations respectively. The above rules on signs can

then be used.

One will also need to enter a large penalty as the objective function coefficient for the

artificials. The coefficient will be negative in a maximization context and positive in a

minimization problem. The magnitude of this penalty is entirely problem dependent and can cause

numerical problems in the solver. All that can be said in general is that the penalty should dwarf

the other objective function coefficients and should be large enough so that the artificial is driven

to zero in any feasible model. In our example we enter this term to the objective function as

follows:

OBJT.. NETINCOME =E=
 SUM((PLANT,TYPE),
 PRICE(PLANT,TYPE) * SELL(PLANT,TYPE))
 - SUM((PLANT,PRODUCT,METHOD,TYPE)

 , MAKE(PLANT,PRODUCT,METHOD,TYPE)
* PRODCOST(PRODUCT,METHOD,TYPE))

 - SUM((PRODUCT,TYPE,PLANT,PLANTS)
 , TRANSCOST(PRODUCT,TYPE,PLANT,PLANTS)

 * TRNSPORT(PRODUCT,TYPE,PLANT,PLANTS))
 - 1000000000*sum((PLANT,RESOURCE),
 ARTRESOUR(PLANT,RESOURCE)) ;

where the -1000000000 is the large penalty.

Alternatively if numerical problems are plaguing the solution with the artificials entered,

one can define a new objective function to be maximized or zero out the old terms then proceed.

In the case above to minimize the sum of the infeasibilities one would alter the objective to be:

9-12

OBJNEW. SUMINFES =E=
 sum((PLANT,RESOURCE),
 ARTRESOUR(PLANT,RESOURCE)) ;

and alter the problem so it had the new variable SUMINFES and minimized that variable.

Similarly, one could just multiply the original objective by zero and make the sum of the

artificials into the effective objective function then solve the model as normal with the original

SOLVE statement as follows:

OBJT.. NETINCOME =E=
 0*[
 SUM((PLANT,TYPE),
 PRICE(PLANT,TYPE) * SELL(PLANT,TYPE))
 - SUM((PLANT,PRODUCT,METHOD,TYPE)

 , MAKE(PLANT,PRODUCT,METHOD,TYPE)
* PRODCOST(PRODUCT,METHOD,TYPE))

 - SUM((PRODUCT,TYPE,PLANT,PLANTS)
 , TRANSCOST(PRODUCT,TYPE,PLANT,PLANTS)

 * TRNSPORT(PRODUCT,TYPE,PLANT,PLANTS))
]
 - sum((PLANT,RESOURCE),
 ARTRESOUR(PLANT,RESOURCE)) ;

9.1.4.3 How Are Distorted Marginals Identified?

The next question involves finding the distorted marginals. Under the BIG M method one

reviews the output in the GAMS LST file as in Table 9.1, Panel B looking for marginals with

large absolute values while under the phase I method one would find non zero marginals.

However, in models with thousands of variables and equations this information can be well

hidden. The GAMSCHK procedure NONOPT has been written to help in this quest. All items

with marginals larger in absolute value than 10 to a filter value are output as potential causes of

the infeasibility when NONOPT is run on a feasible problem.

Suppose we illustrate this. Let us cause the example from Chapter 8 to be infeasible by

taking the model as structured in Table 8.1 and negating the right hand side on the RESOUREQ

9-13

equation in line106. Now adding the artificials exactly as they were specified above (i.e. in the

GAMS instructions for the BIG M implementation in Section 9.1.4.2) and running the solver, we

get an optimal solution with nonzero artificials and a large negative objective value (see the

solution in Table 9.3, Panel A). In turn NONOPT gives the messages in Table 9.3, Panel B. That

output identifies some of lower bounds on the MAKE variables (their nonnegativity restrictions)

and the RESOUREQ equations as likely contributors to the infeasibility. In turn one could

examine those items to find the infeasibility cause.

Usage of NONOPT for these purposes requires that the marginal filter value be set in

conjunction with the size of the penalties on the artificials. The default filter is 6, thus all

marginals greater in absolute value than 106 will be reported. We recommend that for the artificial

penalties be greater than 10 to the filter in absolute value by at least a factor of 1000 (that is why

we use such a large number). One can change this filter by using the GAMSCHK option file

employing the MARGFILT option. If one is using the phase 1 approach then the marginal filter

can be set small say to -5 (Try this with the phase I formulation in blockarti.gms).

9.1.5 Using IIS

An alternative method for finding infeasibility causes involves using Chinneck’s IIS. The I

IS procedure invokes infeasibility finding techniques which discover sets of constraints and

bounds on variables (including nonnegativity conditions) which cause a problem to be infeasible.

Namely, the IIS procedure discovers an "irreducible infeasible set"(IIS). An IIS set consists of

equations and/or variable bounds which are collectively infeasible, but become feasible if any one

of them is deleted from the set. These sets are discovered by an algorithmic procedure which

temporarily relaxes constraints and variable bounds either by dropping them or by adding artificial

9-14

variables until the IISs are found. We will not go further into the exact procedures employed by

the IIS implementation. The mathematical programming theory basis and algorithmic

implementation details are presented in a number of papers by Chinneck and various co-author's.

The procedure is carried out by CPLEX on request in an automatic fashion.

Suppose, we provide an example which illustrates IIS use and output. In particular,

suppose we use the infeasible problem from section 9.1. An initial solution of this model reveals it

to be infeasible. Then we solve the problem again with CPLEX with the IIS procedure active. In

turn the IIS procedure will identify the model constraints related to the infeasibility. This requires

that we provide an options file which suppresses the presolve and invokes IIS (one should

suppress the presolve as it can cause CPLEX to terminate without running the IIS). The options

file we use in this case is:

presolve 0
iis 1

We also enter commands into our problem file (infecp.gms) that request CPLEX be used and

make the options file active. The file submitted then is:

variable objmax;
positive variables x1, x2,A
equations obj, r1, r2, r3;
obj.. objmax =e= 50*x1 +50*x2 ;
r1.. x1 + x2 =L= 50;
r2.. 50*x1 + x2 =L= 65;
r3.. x1 =G= 20;
model infe /all/;
infe.optfile=1;
option lp=cplex;
solve infe using lp maximizing objmax;

Following solution the following IIS output appears in the LST file:

9-15

Problem infeasible.
IIS found.

An IIS is a set equations and variables (ie a submodel)which
is infeasible but becomes feasible if any one equation or
variable bound is dropped.

A problem may contain several independent IISs but only one
will be found per run.

Number of equations in the IIS: 2.

upper: R2 < 65
lower: R3 > 20

 Number of variables in the IIS: 1.
lower: X2 > 0

This output shows that the IIS procedure discovered an IIS set consisting of three elements: the

second and third constraint equations along with the nonnegativity condition on X2. Thus if a)

the second equation was dropped (50X1+X2#65), b) the third equation was dropped (X1$20) or

c) the nonnegativity condition on X2 (X2$0); then the problem would become feasible.

Ordinarily, the third condition is one modelers do not typically think about as the IIS sets almost

always contain an identification of variables which if allowed to become negative relax the

infeasible constraint equaions and permit feasibility.

One characteristic of the IIS approach is that it will only discover one set of infeasible

equations at a time. To illustrate this, we apply the IIS to the problem from chapter 8 as used in

the artificial variable section above (9.1.4.3) where we negate the right hand sides on the

RESOURCE constraints. This modification yields a problem containing several IISs, since each

of the individual equations is separately infeasible. A run of the IIS yielded the output below.

Number of equations in the IIS: 1.
upper: RESOUREQ(PLANT2,LABOR) < -1250

9-16

Number of variables in the IIS: 6.
lower: MAKE(PLANT2,CHAIRS,NORMAL,FUNCT) > 0
lower: MAKE(PLANT2,CHAIRS,NORMAL,FANCY) > 0
lower: MAKE(PLANT2,CHAIRS,MAXSML,FUNCT) > 0
lower: MAKE(PLANT2,CHAIRS,MAXSML,FANCY) > 0
lower: MAKE(PLANT2,CHAIRS,MAXLRG,FUNCT) > 0
lower: MAKE(PLANT2,CHAIRS,MAXLRG,FANCY) > 0

In that output IIS identified one of the RESOURCE equations as being in the infeasibility causing

set along with the nonnegativity conditions for six MAKE variables appearing in the equation.

Under those circumstances, if one went back and only fixed the first RESOURCE equation, then

one would go through several more applications of the IIS procedure before the full set of

infeasibilities was uncovered. This contrasts with the artificial variable technique where all of the

infeasible equations would be identified in one pass. However with the artificial variable

technique there would not be the rigorous identification of a set of constraints such that the

removal of any one would render that part of the problem feasible. Rather, there would be a

collective identification of all the items involved with the infeasibility which could possibly be in

separate IISs but are identified as one big collective set.

This shows the general type of performance one might expect from IIS usage. Namely, the

IIS will examine an infeasible problem and find a subset of equations such that the removal of any

one renders that problem subset feasible. Typically that subset will involve constraint equations

along with variable nonnegativity conditions. Given this IIS identification, one can examine the

identified equations and variable nonnegativity conditions and either repair the model or figure

other ways to make the problem formulation feasible. The subset of equations in the IIS will not

necessarily contain all of the causes of the infeasibility within the total problem structure. Namely,

when there are multiple infeasible equation sets then multiple applications of IIS maybe necessary

9-17

to find all the problems. However often with modeling in GAMS an IIS identification may lead

one to discover block level equation specification problems fixing a number of IISs at once. This

would have most likely occurred in the example involving the RESOURCE equation as one

would have found the negative right hand sign problem and fixed all of the occurrences at once.

Thus, IIS use while conveniently finding a small set of equations may take more than one pass to

fully identify all the problematic equations. The artificial variable technique discussed above will

find all the occurrences in one pass provided degeneracy has not occurred due to redundancy in

the infeasible equations

9.1.6 General Procedure for Finding Infeasibility Causes

Let us summarize a general procedure for finding infeasibility causes.

Step 1 Identify that the model is infeasible or could be infeasible.

Step 2(a) Use CPLEX IIS to find an infeasible set, then go to Step 7

Step 2(b) Identify the places where artificial variables are needed to guarantee

feasibility. There are three ways that one can identify these places.

i) Use GAMSCHK using the ADVISORY procedure and have it

generate a list of places. Equivalently run NONOPT in IDENTIFY

mode, but note this involves a solve and that infeasible models may

cause GAMS execution errors. In turn, the equations and variable

bounds identified as potentially infeasible are the candidates for

artificials

 ii) Take the output from one of the PRESOLVE routines in the

solvers such as OSL or CPLEX and identify the potential

9-18

infeasibilities listed for the addition of artificial variables.

 iii) Take the solution output from a solver LST file and pick out the

equations and/or variables flagged with INFES. These can also be

found by looking at the NONOPT output when NONOPT is run on

an infeasible model.

All three steps above identify places where artificial variables need to be

added. We believe only the first will identify a set of artificials which if

added will result in an “artificially” feasible model which will not need

additional artificials added later.

 Step 3 Add artificial variables to the identified places. Mechanically the artificial variables

are added according to the rules above. Insure that the absolute value of the

objective function penalty is at least a thousand times the largest expected

marginal.

Step 4 Solve the model.

Step 5 If the model is not feasible, then go back to Step 2(b) and add more artificials. If

an optimal solution is found, go on to Step 6.

Step 6 The feasible solution is “artificially feasible” and is not a valid feasible solution if

any of the artificial variables are nonzero. Find out if this is the case and if so look

for large distorted shadow prices. This may be done manually or through the use

of GAMSCHK using the NONOPT procedure. If using NONOPT, make sure the

artificial penalties and the MARGFILT option value are set in an appropriate

relative manner. Identify those items with large marginals as contributors to the

9-19

infeasibility.

Step 7 Investigate the identified items, fix the problem and repeat the above procedure if

needed. If you cannot find the infeasibility cause, gain further insight by using the

tools discussed in the section on finding the cause for an unrealistic optimal

solution in the last part of this chapter.

9.1.7 Infeasibility and Non Linear Programs

Much like the discussion in chapter 8 indicated nonlinear programming problems merit

special treatment. This is not because a different technique is to be used, but rather because of the

expanded possibility of numerical problems and the importance of starting points. Fundamentally,

one discovers the causes of infeasibility in an NLP in the same fashion as one would in an LP.

Artificial variables are entered in all constraints that are not feasible at the starting point (note in

an LP one looks for equations that are not satisfied when everything is zero however in an NLP

one should do this evaluation around the starting point for the variables which have had starting

points specified for them and zeros for the other variables). GAMSCHK in NONOPT or

ADVISORY mode will identify the constraints which are not feasible taking the starting points

into account. Then would one would modify the objective function using either the Big M or

Phase I approach as discussed in section 9.4.2 (numerical difficulties often favor use of the Phase

I form in NLP cases). One then hunts for the large or nonzero shadow prices as discussed in

section 9.4.1.3(see the example problems nlpinfes.gms which is simply an infeasible NLP,

nlpinfpi.gms- which is a phase I implementation for that problem- and nlpinfar.gms- a big M

implementation for that problem).

However, when dealing with NLP’s there is one key difference , namely the possibility of

9-20

numerical problems. Once a set of potentially problematic constraints has been identified it is

worthwhile evaluating any constraints which contain nonlinear terms to see how much they are

infeasible by and whether a change in solution tolerance or a slight loosening of the constraints is

desirable. One can also obtain this information by looking at the optimal values of the artificial

variables. It can also be worthwhile to investigate whether the constraints with nonlinear terms

form a convex constraint set (if this is not true, numerical problems are highly likely). Users may

wish to temporarily remove constraints with nonlinear terms and make sure the rest of the

problem is feasible, then slowly add back in the nonlinear constraints. Manipulation of solver

tolerances and or use of alternative nonlinear solvers may also be in order.

9.1.8 Infeasibility and Mixed Integer Models

Yet another special infeasibility case involves MIPs. Because of integer restrictions

models may be infeasible for which an optimal LP solution can be found. Consider the following

example (MIPINFES.gms)

1 variables z;
 2 integer variables x1,x2;

 3 equations r1,r2,r3,r4;
 4 r1.. z=e=3*x1+2*x2;
 5 r2.. x1+x2=l=10;
 6 r3.. x1=g=4.1;
 7 r4.. x2=g=5.1;
 8 model infemip /all/
 9 solve infemip maximizing z using mip;

Solving this problem in OSL causes it to crash while CPLEX concluded normally but said that the

problem was integer infeasible. The reason that the problem is integer infeasible is found in the

interaction of constraints r2, r3, and r4 along with the integer restrictions on x1 and x2. The only

way that solution then use for to x1 and x2 can satisfy r3 and r4 while being integer is to take on

9-21

the values of 5 and 6 respectively which makes their sum equal to 11 while r2 causes that to be

infeasible. Adding artificial variables and solving causes partial, but not full discovery of the

problem. Namely, if we add artificials to r3 and r4 (mipinfar.gms) as follows

 1 variables z;
 2 integer variables x1,x2
 3 positive variables a1,a2
 4 equations r1,r2,r3,r4;
 5 r1.. z=e=3*x1+2*x2-1000000*(a1+a2);
 6 r2.. x1+x2=l=10;
 7 r3.. x1+a1=g=4.1;
 8 r4.. x2+a2=g=5.1;
 9 model infemip /all/
 10 solve infemip maximizing z using mip;

we get a solution as follows:

 LOWER LEVEL UPPER MARGINAL

---- EQU R1 . . . 1.000
---- EQU R2 -INF 10.000 10.000 3.000
---- EQU R3 4.100 5.000 +INF .
---- EQU R4 5.100 5.100 +INF -1.000E+6

 LOWER LEVEL UPPER MARGINAL

---- VAR Z -INF -1.000E+5 +INF .
---- VAR X1 . 5.000 100.000 EPS
---- VAR X2 . 5.000 100.000 1.0000E+6
---- VAR A1 . . +INF -1.000E+6
---- VAR A2 . 0.100 +INF .

with the artificial variable a2 in it a shadow prices on the r4 constraint as well as a large marginals

for the reduced cost of x2. Note that shadow prices are not assigned to the r2 and r3 constraints

in conjunction with the r4 constraint cause of the infeasibility problem. To understand why this

happens one needs to recognize how an MIP is solved. Generally, MIPs are solved with branch

and bound algorithms. During solution that algorithm imposes constraints on the integer variables

holding them at integer levels. The constraints r2 and r3 in all likelihood would be superseded by

9-22

constraints added during the branch and bound solution process that held x1 greater than or equal

to 5 and x2 greater than or equal to 6. Thus, those constraints would have been redundant and

non binding. As a consequence shadow prices would not appear on those constraints at the time

that the problem was judged infeasible and would not be reported back to the user. Note

however in our solution lead to get a large marginal on the x2 variable which indicates that it is

being held at a bound in the final optimal solution i.e. apparently during the last branch and bound

iteration a lower bound has been imposed on x2 holding it to be greater than or equal to 6. Thus,

the marginal information steel provide to least a partial road map pointing to the cause of the

difficulty in the problem. Namely, it shows the infeasibility is involved with the interaction of x2

and r4 at least a pointing out to us to investigate those two items.

 In general, in the MIP arena the marginal information is less reliable because it’s less well

defined due to the noncontinuity of the solution region and the way that solvers add constraints as

they work. However, adding artificial variables still aids in problem diagnosis providing

information on at least a partial subset of the constraints to investigate. Further, the shadow

prices in an MIP context become more informative as more and more continuous variables appear

in the problem, particularly when the infeasibility is not caused by constraints that are only

affecting the pure integer variables..

9.2 Correction of Models Which are Unbounded

LP problems occasionally yield unbounded solutions. One can try to use the tools

reviewed in the last chapter to find the problem. However, if the model is still unbounded, one

can modify the model and solve it to gain information on the causes. This is done through the

imposition of “artificially” large bounds. Linear programming solvers discover unboundedness

9-23

Max 5X1 & 3X2 % 3X3

X1 & X2 % X3 # 0

X3 # 20

X1 , X2 , X3 $ 0

when they find a variable which is attractive to make larger, but find that the variable may be

increased without limit. This may occur at any stage of the Phase II iterations. Thus, while only

one unbounded variable will be reported, there may be numerous other variables which have not

been examined and could be unbounded. Unfortunately, the LST file does not generally give

enough information to diagnose and fix the cause of the unboundedness and pre-solves rarely find

such problems. Commonly, the solution report contains an instance where a particular item is

tagged as unbounded (with the marker UNBND) as in Table 8.9, but there will also be other

variables marked as nonoptimal (NOPT) which may or may not be unbounded. Finally, note that

use of ANALYSIS and correction of all identified problems does not indicate the model will be

bounded. Thus, most modelers will occasionally contend with models that are unbounded and

will need to discover what is causing that condition.

9.2.1 Solvers and Unbounded Models

 Causes of unbounded models are not always easily identified. Solvers may report a

particular variable as unbounded when in reality an entirely different variable and interactions

between variables imposed within constraints is the real cause. Consider the following example:

Here the unboundedness is caused by the interrelationship between X1 and X2. In particular, since

X1 is profit generating but requires X2 and the net profit contribution of both is positive and since

there are no constraints limiting X1 or X2, then this model is unbounded. There may be several

9-24

potential explanations as to why the unboundedness is present. The profit contributions may not

be volume independent and some form of diminishing revenue or increasing cost as sales increase

may be omitted. Second, there may be omitted constraints on X1 or X2. Third, there may be

multiple errors involving the above cases. Runs with OSL, CPLEX, BDMLP and MINOS

resulted in the marking of X2 as the unbounded item. This may or may not be a proper

identification of the problem causing mistake. The mistake may be on the X1 side. Usually

unboundedness occurs because of the interaction of multiple variables and constraints, not just the

one variable that the solver happens to mark. In a more complex model, potentially a set of 50

variables and constraints could be involved. Thus, we need to find the involved set of variables

and equations and then look for the root cause of the unboundedness. How then does one go

about discovering this? Again, model modifications may be necessary.

9.2.2 Finding Causes of Unboundedness -- Basic Theory

Linear programming theory shows that infeasible primal problems usually lead to

unbounded dual problems. Since the dual of the dual is the primal, we may attack unboundedness

by using a “dual” artificial variable approach. Duality theory shows the equivalent action to

introducing a dual artificial variable is to enter a large primal upper bound. Thus, we bound the

variables to be less than or equal to some very large number like 1010. The consequent model will

be bounded, but the solution may have variable values which are quite large. Suppose in the

example we bound the X1 and X3 variables since they contribute revenue to the objective function.

9-25

Max 5X1 & 3X2 % 3X3

X1 & X2 % X3 # 0

X3 # 20

X1 # 1000000000

X3 # 1000000000

X1 , X2 , X3 $ 0

Note we are making the problem “artificially” bounded. If it is truly unbounded, then we should

expect that the solution will show X1 and X2 taking on large values which are far larger than any

anticipated “non artificial” value. However, when unboundedness is not present the large upper

bound constraints should be redundant with no affect on the solution.

Summarizing, the approach to solving potentially unbounded problems is to add large

bounds guaranteeing a bounded solution. When the solution shows the large bounds are binding

constraints, then one knows the problem is really unbounded. In such a case the solution

information can be used to diagnose the cause of the unboundedness.

We illustrate this by setting up a GAMS model of our above example (called UNBD).

When we solve UNBD without the bound constraint active, the solver reports that the model is

unbounded placing a flag on X2 showing that as it enters the solution the model becomes

unbounded (Table 9.4, Panel A). If on the other hand, we add a large upper bound on X1 , we

then obtain an optimal solution as in Table 9.4, Panel C. In the Panel C solution, both X1 and X2

have taken on quite large values but not X3. So what? The solution tells us what is wrong in the

model through the variable levels. The levels for both X1 and X2 are distorted while X3 is

9-26

unaffected. Thus, the modeler would receive signals that the unboundedness involves the interac-

tion of the X1 and X2. In turn, we would examine these variables and any binding equations

relating them to fix the unboundedness.

The above material indicates a way of finding the cause of unboundedness. Namely, set

up the model with large bounds present, solve it and look for distorted levels to find the causal set

of variables and equations. One word of caution, this will always identify some of the

unboundedness causes, but in the face of a nonunique primal solution caused by degeneracy or

alternative optimals may not reveal them all. Thus, multiple applications of the procedure may be

needed.

9.2.3 Details on Large Bound Approach to Resolving Unboundedness

The following gives the steps for finding unboundedness causes.

Step 1 Identify the relevant variables for which artificially large bounds need to be
added.

Step 2 Add bounds to those variables.

Step 3 Solve the model.

Step 4 Examine the model solution. When variable and equation solution levels
are found which are excessively large, identify those as the variables and
equations to be examined for the cause of infeasibility.

Step 5 Fix the model and repeat the process if needed.

There are several questions inherent in the above procedure. In particular, which items need

bounds? What type of bounds should be entered? How does one find an excessively large level?

Each is discussed below.

9-27

9.2.3.1 Where Do We Add Large Bounds?

The places where bounds are required can be determined in several ways. One could look

at the model solution and just add bounds on the variables marked by the solver as unbounded or

nonoptimal. However, while this rather readily points to proper places in the example model, it

does not always do such. One approach that can be used is to add bounds to all potentially

unbounded variables.

Linear programming models are unbounded when the solver finds the objective function

can be improved by altering the value of a variable, but finds that variable is not limited by a

constraint. Thus, to identify all potentially unbounded variables then one has to find all variables

which contribute to the objective function, but are not directly bounded. Such cases in a

maximization context involve

a) nonnegative variables with positive objective coefficients and no upper bound

 b) nonpositive variables with negative objective coefficients and no lower bound

c) unrestricted or free variables with positive objective coefficients and no upper

bound

d) unrestricted or free variables with negative objective coefficients and no lower

bound

These cases identify a larger than necessary set since the restrictions imposed by the

constraint set are not considered. However, more complex tests would be needed to factor in

those constraints. The ADVISORY and NONOPT procedures in GAMSCHK have been written

to create a list of all occurrences of these cases. Use of ADVISORY does not require the model

be solved or while NONOPT in IDENTIFY mode only work after a model solve. Note part of

9-28

the Table 9.5 output gives an example of this case showing the SELL variables need bounds to

guarantee the model will be bounded.

GAMS permits an alternative technique for bounding the problem. Namely, one can go

provide a large upper bound on the variable to be maximized or if the problem is minimization

problem a large negative lower bound. Attributes of this technique will be discussed in section

9.2.3.4 below.

9.2.3.2 Entering Bounds in GAMS

Once one has found where the bounds need to be added, one still has to address the

question of how they should be added and what bound level should be used. The following

general rules apply. A bound should be defined for each variable block with the same dimension

as the block. Thus, if a variable is defined like SELL(PLANT,TYPE), where the SELL objective

function coefficients increase the objective function as the variable value increases, then define a

bound.

SELL.UP(PLANT,TYPE)=1000000000;

On the other hand, if SELL can be negative and the objective function increases as the variable

decreases then define,

SELL.LO(PLANT,TYPE)= -1000000000.

The numerical magnitude of the bound is entirely problem dependent. All that can be said in

general is that it should dwarf the largest reasonably anticipated “real” variable level, but should

be less than 1031 which is considered infinite in GAMS.

The shortcut approach can also be used where one bounds the variable being optimized.

For example, if the solve statement minimizes the variable COST then one can be found the

9-29

problem simply by entering in the statement

COST.LO = -1000000000;

9.2.3.3 How Do I Find Distorted Levels?

The next question involves finding the distorted levels. The simple aspect of this is that

one can simple review the output as in Table 9.4, Panel B and find the levels with large exponents.

The more complex aspect is that in a model with thousands of variables and equations this

information can be well hidden. The GAMSCHK NONOPT procedure has been written to help

in this quest. All items with levels in an optimal solution which are larger in absolute value than

10 to a filter value are output as potential causes of the unboundedness.

Suppose we illustrate using the messed up example from Chapter 8. We also cause the

example to be unbounded by taking the model as structured in Table 8.1 then zero the

transportation supply usages in line 109 of Table 8.1 and add bounds to the SELL variables as in

the above discussion. In this case when we run the solver we get an optimal solution but some of

the SELL variables are unrealistically large (Table 9.5). In turn NONOPT yields the output in

Table 9.6. NONOPT has named some of the SELL and TRNSPORT variables as items which

have excessively large levels and are likely contributors to the unboundedness. In turn one could

examine those items and the constraints linking them (possibly using DISPLAYCR, PICTURE,

BLOCKPIC or POSTOPT) to find the unboundedness cause.

Usage of the NONOPT for these purposes requires that the LEVELFILT value be set in

conjunction with the size of the artificially large bounds. The default LEVELFILT is 6 thus all

levels greater in absolute value than 106 will be reported. We recommend that the absolute value

of the bounds be greater than 10 to LEVELFILT by at least a 1000 (that is why we use such a

9-30

large number). One can change this filter by using the GAMSCHK option file and altering

LEVELFILT.

9.2.3.4 Comparing the Bounding Techniques

As mentioned in sections 9.2.3.2 and 9.2.3.3 there are actually two unboundedness

techniques that can be used. In particular, one can bound the unboundedness by providing

bounds on multiple individual variables which contribute to the desirability of the objective

function (for example, those that are profitable in a maximization problem) or can simply bound

the single variable which is being optimized in the problem. There can be substantial differences

in the value the information generated by the techniques, thus a comparison of their characteristics

is desirable. The two most distinguishing characteristics of the techniques involve simplicity of

use and completeness of information. First, the technique where one simply bounds the variable

being optimized is simpler one simply adds one bound statement without having to think through

which variables are desirable to the objective function and then add multiple bound statements on

those. Second, simplicity has its costs fancy information content in solution may be less under the

simpler bound technique. Namely when a unbounded model is solved and there is more than one

set of variables causing the unboundedness, the use of the single bound will only reveal one

unbounded case at a time. To illustrate this let us return to our example and rather than imposing

upper bounds on all the SELL variables let us just impose an bound on the NETINCOME

variable(blockbn2.gms). In that case a run of GAMSCHK with NONOPT generates the

following output

 ----### THESE VARIABLES MAY BE UNBOUNDED
 Since their levels are so large

 TRNSPORT(TABLES,FANCY,PLANT1,PLANT2) level 1246883.
 TRNSPORT(CHAIRS,FANCY,PLANT1,PLANT2) level 7481297.

9-31

 SELL(PLANT2,FANCY) level 1246883.

whereas a run of the model use with bounds placed on the profitable for each individual sell

variables and yields the following output

----### THESE VARIABLES MAY BE UNBOUNDED
 Since their levels are so large

 TRNSPORT(TABLES,FUNCT,PLANT1,PLANT2) level 0.1000000E+10
 TRNSPORT(TABLES,FANCY,PLANT1,PLANT2) level 0.1000000E+10
 TRNSPORT(CHAIRS,FUNCT,PLANT1,PLANT2) level 0.4000000E+10
 TRNSPORT(CHAIRS,FANCY,PLANT1,PLANT2) level 0.6000000E+10
 SELL(PLANT2,FUNCT) level 0.1000000E+10
 SELL(PLANT2,FANCY) level 0.1000000E+10

comparing the outputs the fact the more extensive bounding technique generates information on

more cases. Much like in the case of the IIS above the trade-off is between the more than

expensive model examination and bound imposition exercise needed to fully bound all the

profitable variables in the model vs. the simple, one bound statement needed approach which

might take multiple solution passes to fully identify all the problems in the model.

9.2.4 General Procedure for Finding Unboundedness Causes

We then now outline our procedure for finding the causes of unboundedness.

Step 1 Identify that the model is unbounded or could be unbounded

Step 2 Identify where to add artificially large bounds. There are four ways to

identify these places

a Manually identify all variables which contribute to the objective

function and are not bounded

b Use the GAMSCHK ADVISORY or NONOPT-IDENTIFY

procedure. In turn, the equations and variables listed as potentially

unbounded are the candidates.

9-32

 c Pick out the equations and/or variables flagged with UNBND and

NOPT in the solver LST file. These can also be found by running

NONOPT on an unbounded model without the IDENTIFY

keyword.

d. Add an upper bound to the variable being maximized or a lower

bound to the variable being minimized if one wants to take the

simple one bound approach.

All four ways identify places where artificially large bounds need to be

added. We believe only the first and last will guarantee that the subsequent

model will be artificially bounded.

 Step 4 Add the artificially large bounds. Mechanically the bounds are added

according to the rules above. Insure that the absolute bound value is at

least a thousand times the largest absolute expected variable level.

Step 5 Solve the model.

Step 6 If the model is still unbounded go back to Step 2 and add more bounds. If

an optimal solution is found, pass on to Step 7.

Step 7 The feasible solution is “artificially bounded” and not a valid bounded

solution if any of the artificially large bounds are binding. Find out if this is

the case and if so look for large distorted variable and equation levels.

This may be done manually through the use of GAMSCHK using the

NONOPT procedure. If using NONOPT make sure the artificially large

bounds and the LEVELFILT option value are set in an appropriate relative

9-33

manner. Identify those items with large levels as contributors to the

unboundedness.

Step 8 Investigate those items and any binding constraints which interrelate them.

Fix the problem and repeat the above procedure if needed. If you cannot

find the unboundedness cause, then use the tools discussed in the section

on finding the cause for unrealistic optimal solutions.

9.2.5 NLPs, MIPs and Unboundedness

In the sections above we presented material that indicated that infeasibility diagnosis

involves a somewhat different set of issues dealing with mixed integer or nonlinear programs.

When dealing with the unbounded case there are really not fundamentally different approaches to

use with dealing with either mixed integer programs or nonlinear programs. One proceeds adds

above in either case. However in the nonlinear programming case one also has to consider has

two additional issues: objective function form and solver numerical properties. In terms of

objective function form, nonlinear programming theory requires a concave objective function for

the attainment of global optimality in maximization problems and a convex objective function in

the case of minimization problems. The if a nonlinear programming model is judged unbounded,

then one should investigate the objective function convexity/concavity characteristics. Nonlinear

programming books such as Hadley or Bazarra and Shetty cover this issue.

Second when a nonlinear programming model is judged unbounded and one can be

running into numerical problems. In particular, issues such scaling, starting points, tolerances and

other numerical issues can be a the problem If the nonlinear model is malfunctioning one might

send the problem to CONOPT to see if it is rejected for scaling and otherwise investigate the

9-34

starting point, scaling and numerical tolerances. The bounding technique above has been shown

in the authors work. to be useful but on occasions has been subject to numerical problems which

needed to be resolved before proceeding.

9.3 Duality and A Single Artificial

The alternative approach to unboundedness discovery were one simply enters a single

bound on the objective function coupled with duality theory suggests an alternative artificial

variable approach which some may wish to employee. Namely, it is possible the add just a single

artificial variable which is in that the dual of the single bound on the overall objective function.

This artificial variable is added in the following manner. Add the artificial variable into the

objective function with either a big M penalty or in the phase 1 case just a plus one coefficient.

The artificial also enter the constraints which are not feasible at the all zero (or starting point in

NLPs) solution. It will have a negative one coefficient in less than or equal to constraints which

have a negative right hand side; a positive one coefficient in greater than or equal to constraints

which have a positive right hand side; and a coefficient of one with the sign the same as the sign

of the right hand side in equality constraints which have a nonzero right hand. Such an artificial is

added in the example blockar3.gms. There an application of NONOPT in GAMSCHK shows the

solution contains the message

----### THESE EQUATIONS MAY PARTIALLY CAUSE INFEASIBLE MODEL
 Since their marginals are so large
 RESOUREQ(PLANT1,LABOR) marg 0.1000000E+08

along an identification of eight of the MAKE variables as also having large marginals. On the

other hand running the model with the full set of artificials present in each of the possibly

infeasible equations yields.

9-35

----### THESE EQUATIONS MAY PARTIALLY CAUSE INFEASIBLE MODEL
 Since their marginals are so large
 RESOUREQ(PLANT1,SMLLATHE) marg 0.1000000E+10
 RESOUREQ(PLANT1,LRGLATHE) marg 0.1000000E+10
 RESOUREQ(PLANT1,CARVER) marg 0.1000000E+10
 RESOUREQ(PLANT1,LABOR) marg 0.1000000E+10
 RESOUREQ(PLANT1,TOP) marg 0.1000000E+10
 RESOUREQ(PLANT2,SMLLATHE) marg 0.1000000E+10
 RESOUREQ(PLANT2,LRGLATHE) marg 0.1000000E+10
 RESOUREQ(PLANT2,CARVER) marg 0.1000000E+10
 RESOUREQ(PLANT2,LABOR) marg 0.1000000E+10

along with identification of fourteen of the MAKE variables as also having large marginals. Thus,

when using the single composite artificial one finds the most infeasible case, not all the infeasible

cases. Consequently, one would have to interactively solve the model, fix any cases found, then

resolve the model fix any additional cases found and so until all the infeasibility cases had been

resolved.

9.4 Unrealistic Optimal Solutions

Unfortunately, an investigation of some optimal solutions quickly shows that the solution

is ridiculous. The presence of an optimal solution means a problem has a mathematically

consistent optimum. However, mathematically consistency does not necessarily imply that the

solution will be realistic in terms of the entity being modeled. Usually unrealistic solutions are

caused by improper specifications within a model. For example, one may inadvertently omit

constraints, leave out certain coefficients, improperly calculate coefficients and/or make algebraic

errors in the GAMS equation specifications. Ultimately such errors are found by examining the

empirical model comparing the empirical structure and coefficients with expectations about a

proper empirical model. In turn, one usually finds and corrects errors. This section covers ways

to search for such errors. However, we will not be any means exhaustive as error finding is

always problem specific.

9-36

Improper model solutions exhibit incorrect valuation and/or allocation results. Valuation

difficulties arise in the reduced cost and shadow price information. Valuation information is

determined by setting the reduced costs to zero for basic variables. Allocation difficulties arise

when the slack or decision variable values are unrealistic. The values of these items are formed

through the satisfaction of the constraints. Thus, to find unrealistic solutions, one investigates

either the valuation information associated with the reduced costs or the allocation calculations

inherent in the primal constraints. Two techniques are presented below, one for the investigation

of reduced costs, which we call “budgeting”; and another for the reconstruction of the constraint

calculations, which we call “row summing.”

9.4.1 Budgeting

A model analysis technique useful when dealing with unrealistic optimal solutions involves

reconstruction of the reduced costs. We will call this procedure budgeting and GAMSCHK

supports it through the POSTOPT procedure when variables are selected. Budgeting can be used

for both linear and nonlinear problems. We will cover the theory for an LP but the principles are

the same in the NLP arena.

9.4.1.1 Theoretical Background for Budgeting

In any linear programming problem the optimal solution arises when the reduced costs of

the basic variables are equal to zero and the reduced costs of the non-basic variables are greater

than or equal to zero. The formula for the reduced cost of all variables is:

 E
i

ui aij & cj $ 0 for all j

In this equation, ui is the shadow price from the solution, aij is the amount of the ith resource used

in producing the jth commodity and, cj the direct objective function contribution of the jth

9-37

variable. This equation shows that the sum of the shadow prices times the resource usage is

greater than or equal to the objective function contribution for each and every variable. Further

in a linear programming solution the reduced cost of the basic variables is equal to zero, so for

basic variables the equation above reduces to:

E
i

ui aij & cj ' 0 for j basic

or in matrix terms

 UB - CB = 0

where the matrix B gives the elements of the constraint matrix for the basic columns, and CB is the

vector of objective function coefficients for the basic variable values. In turn this equation can be

rewritten as:

UB = CB

and given that B is invertible one can solve for U

U = CBB-1

This equation shows how shadow price values are computed. Namely, the shadow price values

are a function of the coefficients of the variables in the linear programming model which use those

resources. What this means is that the shadow prices take on their values from the basic variables.

Thus, in order to examine incorrect evaluation information one needs to examine the reduced

costs of the basic variables, we do this through the budgeting technique.

9.4.1.2 The Budgeting Technique

The budgeting technique is simply an explosion of the equation in

. E
i

ui aij & cj $ 0 for all j

What we do in order to budget is create a table that is formatted as follows:

9-38

Budget for Variable j

Equation Name aij Shadow Price ui aij

i=1 a1j u1 u1 a1j

i=2 a2j u2 u2 a2j

 ! ! ! !
i=m amj um um amj

Sum -- -- Eiuiaij

Objective -- -- -cj

Reduced Cost -- -- Eiuicij-cj

Here we list each equation in which the variable to be budgeted has a coefficient, as well as the

shadow prices for those equations. In turn, we multiply them together, sum across the equations,

subtract off the objective function coefficient cj and then form the reduced cost. Collectively this

should exactly reproduce the calculations in the model that determine the variable to enter during

simplex iterations and the calculations inherent in the formation of the shadow prices. The

procedure also yields the optimal reduced costs which give costs of forcing a nonbasic variables in

the solution. The utility of this information is that one may examine

1. why particular variables are in the solution that one feels should not be;

2. why particular variables are held at a zero solution level one feels they should be

nonzero; and

3. why resources are worth particular amounts in terms of their optimal marginal or

shadow price values.

This is probably best illustrated by the solution example, thus consider the model shown in Table

9.7.

This model contains variables for buying miscellaneous inputs, selling corn, soybeans, and

9-39

pork; and producing corn, soybeans, and hogs. The objective is maximized subject to equations

constraining land, and supply-demand balances on pork, soybeans, corn, and miscellaneous inputs.

The miscellaneous equation item is specified in dollars and therefore enters the objective function

at a per unit cost of $1 while supplying a dollar's worth of miscellaneous inputs. Corn is sold for

$2.50 per unit, soybeans for $6 per unit, and pork for $.50 per unit. Corn production incurs $75

in direct production costs and $125 in miscellaneous inputs while using one acre of land and

yielding 120 bushels of corn. Soybean production costs $50 in direct production costs and

another $50 in miscellaneous inputs while using an acre of land and yielding 50 bushels of

soybeans. Hog production has no direct costs, uses $20 in miscellaneous inputs, and requires 20

bushels of corn. An unrealistically large yield in the hog activity has been entered (1000 pounds

per hog). This example "error" will be sought by the budgeting technique.

The optimal solution to this model is shown in Table 9.8. The optimal value of the

objective function is $1,608,000. This solution includes several symptoms that there is something

wrong. For example, 3,600,000 pounds of pork are sold, the reduced cost on selling soybeans is

$49.6 a bushel, the shadow price on land is $2,680 and the shadow price of corn is $24 a bushel.

Budgeting investigates the shadow prices and reduced costs in an effort to discover model

misspecifications.

Budgeting involves construction of an extensive version of the reduced cost calculations

which in turn are examined for plausibility. The variable budgeted first could be chosen because:

a) it is nonbasic when intuition suggests it should be basic; b) it has an unrealistically high reduced

cost; or c) it uses a resource which appears to be improperly valued. In the example, suppose we

budget soybean sales because of its high reduced cost. To budget, write a row for each nonzero

9-40

coefficient (aij) under the chosen variable, with associated shadow prices (ui) and aijui the product,

then finally subtracting cost. The budget generated by GAMSCHK POSTOPT for soybean sales

is shown in Table 9.9, Panel A (Note in that table that the objective row does not always appear

as the last entry, rather its placement depends on the order of the GAMS equation specifications).

Mechanically the budget examines the value of resource usage in the equations in which

the variable has nonzero coefficients. In the case of the soybean sales variable, there is a non-zero

coefficient in the soybean production constraint along with an objective function coefficient. The

shadow price on soybean production of $55.60 while the commodity sells for $6.00. Thus, the

direct revenue to sales is $6.00 while the opportunity cost of the soybeans used is $55.60. In this

case the $49.60 reduced cost arises since the bushel of soybeans is only sold for $6.00 while the

$55.60 opportunity cost means the firm would lose $49.60 .bushel of soybeans sold in. Thus, the

reason for the high reduced cost for soybean sales is the internal worth (the shadow price) of

soybeans. Empirically this value is about 10 times what it should be. Thus, we need to

investigate the distorted soybean shadow price.

The cause of a distorted shadow price for a resource always lies in the basic (or super

basic) variables that use or produce that resource. In this case, in the basic variable involved with

soybeans is soybean production. Thus, we budget the soybean production variable. That variable

has non-zero coefficients in the land, soybean balance and miscellaneous input balance constraints.

The budget (Table 9.9, Panel C) shows that one acre of soybeans uses $2,680 worth of land and

yields 50 bushels of soybean, each valued at the opportunity for shadow price of $55.60. Also, 50

units of miscellaneous inputs are used which, valued at the shadow price of $1, cost $50.

Summing these terms, the marginal contribution of soybean production, ignoring its direct costs,

9-41

is $50. Its direct cost (cj=50) is then subtracted yielding a $0 reduced cost for this basic variable.

These data show that the $55.60 soybean value arises because the imputed value of soybeans

needs to balance off against the high imputed value of land - the $2,680 shadow price. The

question then becomes why is land this valuable.

Again, shadow prices are derived from basic variables which use those resources. Thus,

the high land shadow price must arise from the reduced costs of some other basic variable which

utilizes land. The only other land using basic variable is corn production. We then budget the

corn production variable (Table 9.9, Panel B). Note that while one acre of corn production uses

$2,680 of land, it receives $2,880 from the value of the corn sold. Thus, the reason for the

$2,680 cost of land is the $2,880 value of the corn. Institutional knowledge indicates the 120

bushels per acre corn yield is reasonable, but the $24 corn shadow price is not.

Thus, the question becomes, "Why is the corn shadow price so high?" Again, this is

generated by a basic variable which utilizes corn. The only basic corn consuming variable is hog

production. The budget for hog production shown in Table 9.9, Panel D. These computations

show that zero reduced cost for this activity requires that 20 bushels of corn be valued at

$24/unit. The cause of the $24 a bushel value for corn is an unrealistic value of pork produced

($500). The erroneous 1000 lb. coefficient for pork production per hog would then be

discovered. A revised value of the pork yield per hog would alter the model, making the solution

more realistic.

9.4.1.3 Budget Summary

The above procedure gives the general indication of how the budgeting technique is used.

Namely, one finds an unreasonable shadow price or reduced cost and then examines the model

9-42

data in to see why that result might occur. In linear programming models the shadow prices are

always set so the difference between the marginal revenue for producing the product and its

marginal direct objective function cost is equated by the shadow prices. For example, in the

soybean production activity the miscellaneous input costs in objective function coefficient have

fixed prices so the only place to attribute the differences between those items is in the soybean

shadow price in the land shadow price. Since the land shadow price took on a large value, then in

a rigorous all of that value was allocated into the soybean price leading to a very high soybean

opportunity cost. Similarly, when the reduced cost were formed for the hog production variable

in the high yield of pork times the price yielded a high level of marginal revenue that was

allocated to the only factor of production which did not have a fixed shadow price i.e., corn.

 The general procedure then is to go through this residual accounting, possibly in a

deductive step wise situation, until one finds the unrealistically large revenue and cost that is

causing the shadow prices to be distorted. In turn, one then repairs the model and solves it again

and if needed repeats the process.

The budgeting technique is useful in a number of settings. Through its use, one may

examine the reduced costs of nonbasic variables to see what is keeping them out of solution. The

soybean sales variable budget provides such an example. Budgeting may also be used to

investigate the magnitude of shadow prices. Shadow prices arise from a residual accounting

framework where, after the fixed revenues and costs are considered, the residual income is

attributed to the unpriced resources. The example again shows such a case. Finally, budgeting

can be used to deal with infeasible solutions from phase 1 of a two-phase simplex algorithm or

with solutions containing artificial variables to trace the infeasibility cause.

9-43

9.4.2 Row Summing

Model solutions also may be analyzed by examining model constraint activity. In the

budgeting example problem, one could have examined the reasons for the sale of 3.6 million

pounds of pork. This can be done through a procedure we call row summing. Row summing is

done by GAMSCHK under the POSTOPT procedure when equations are selected.

9.4.2.1 Theory Behind the Row Summing Techniques

In any linear or nonlinear programming problem, the constraints generally play a large role

in determining the values of solution variables. The constraints may do many things, for example,

a) providing upper limits on resource usage by the variables; b) lower limits on the variables; or c)

balances between variables (when positive coefficients times a subset of variables are related to

negative coefficients times another subset of variables). In all of these cases, when one finds an

unrealistic solution with for example variables with values much larger than expected, one can

investigate those variables by looking at constraint activity.

Basically the theory of row summing can be developed as follows. In a linear

programming problem, (this presentation is done in a linear programming context but also applies

to the nonlinear programming case) the model is subject to constraints of the form AX + S=b

where AX is the constraint matrix times the decision variables X, S is a slack variable and b is the

right-hand side. The parameters in A can either be positive or negative. In a row sum we

examine the components of AX. Thus, we list all variables with nonzero coefficients in the

equations, the optimum X values, and their product then we sum those, subtract off the right hand

side and compute the slack. The layout is as follows:

Variable
Names Coefficients Variable Levels Product

9-44

X1 ai1 X1
* ai1X1

*
 X2 ai2 X2

* ai2X2
*

 ! ! ! !
Xn an Xn

* ainXn*
Sum -- – EjaijXj

*

RHS -- – b
Slack -- – b-EjaijXj

*

This shows how the activity in the row balances out and in particular how usage by certain

variables times their coefficients is either complementary or competitive with other variables.

Often this shows that the large usage of resources by one variable is complemented by a large

supply of resources by another. It may also show that the resource usage by certain variables is

so large there are no resources left for other variables or that the resource usage coefficients of

particular variable may be larger than desired. Regardless, by considering the activity in each of

the equations one can often find model problems.

9.4.2.2 Example

Again, this is best illustrated through example. Table 9.10 shows a slightly different, but

related, example. That model is structurally the same as that in Table 9.7, but the pork

production coefficient has been altered to -150, while the corn yield per unit has been changed to

an incorrect value of 1200 -- the new error. We have also introduced a RHS of 20 on the corn

balance equation. The resultant solution is shown in Table 9.11. The optimal value of the

objective function is $1,860,055. Here 5.4 million pounds of pork are sold which would probably

be judged to be unrealistically high. Further, there are 36,001 hogs on the farm.

The use of row summing will be illustrated through the GAMSCHK POSTOPT procedure

beginning with a row sum examination of the pork sales constraint to see if 5.4 million lbs. of

sales is reasonable (Table 9.12, Panel A).

9-45

The pork constraint balances the variables sell pork and hog production. The sell pork

variable uses one pound of pork per unit, while the hog production variable yields 150 pounds of

pork per unit. The second column of Table 9.12 contains the optimal variable values (X*). In the

third column, the product of the variable value (X*) and its aij appears. The products are summed

to give total endogenous use which in this case equals zero. We then enter the right-hand side

and subtract it to determine the value of the slack variable. Now suppose we examine the

resultant table. Given institutional knowledge, one would conclude the error has not yet been

found as a yield of150 lbs. of pork per hog is reasonable, and all pork produced is sold. However,

one would wonder if a production level of 36,001 hogs is reasonable. The next step is to examine

the resources used by hog production. For illustrative purposes, we begin with the miscellaneous

input supply-demand balance. The row sum for this constraint is shown in Panel B.

There are four entries in the constraint. The row sum does not reveal anything terribly

unrealistic except the large amount of activity from the hog production variable causes the model

to match this with a high the level of miscellaneous input but per unit rates appear appropriate.

The basic question is yet to be resolved.

We next investigate the corn supply-demand balance. The row sum computations for this

constraint are shown in Panel C. In this case, the constraint has a non-zero right-hand side; thus,

the endogenous sum is 20 and the computed the slack variable is zero. We find the 36,001 hogs

require 720,020 bushels of corn, and the reason they are able to obtain all this corn is because of

the inaccurate yield on the corn production variable. The modeler would then correct the yield on

the corn production variable.

9.4.2.3 Row Summing Summary

9-46

The above example illustrates the principles behind using row summing to find flaws. In

particular row summing allows one to examine how the resources model and constraints are

allocated in the optimum solution. One identifies an item with an unrealistically high solution

value, and then row sums the constraints in which that item appears to discover the problem.

Row summing can be used to discover incorrect coefficient values or coefficient placement errors.

For example, suppose that the corn yield was inadvertently entered in the soybean row; then one

might have discovered a solution in which soybeans are sold but no soybeans are produced. A

row sum would quickly determine the source of the soybeans and indicate the error. Row

summing can also be applied to discover the causes of large values for slack or surplus variables.

9.6 GAMSCHK, Post Optimality Calculations and NLPs

As covered in chapters 8 and 9 errors special considerations are involved when doing

GAMSCHK supported post optimality on nonlinear programming problems. In particular two

items are worthy of mention. First, because of the local Taylor’s series expansion nature of the

nonlinear coefficient terms as reported by GAMS to GAMSCHK, the aij and cj information may

not be strictly accurate in the optimum solution hand GAMSCHK may not properly balance out

the reduced cost and equation activity. An accurate accounting of this information can only be

obtained when one has resolved the model around the current solution. This cause GAMS to

report out the current Taylor’s series expansion. Second, one must remember that the coefficients

in the nonlinear terms are local values of the nonlinear terms, not global values. Thus one must be

careful in interpreting the GAMSCHK output. As the reminder GAMSCHK marks these terms

with asterisks. For example consider the small model

 1 variables z;
 2 positive variables x1,x2;

9-47

 3 equations obj,r1;
 4 obj.. z=e= -3*(x1-2)*(x1-2) -2*(x2-4)*(x2-4);
 5 r1.. x1+x2=l=2;
 6 model nlpe /all/
 7 option nlp=gamschk;
 8 solve nlpe maximizing z using nlp
 9 solve nlpe maximizing z using nlp

The usage of POSTOPT in GAMSCHK during the first solve statement in line 8 yields the

following output:

 ## X1
 EQN Aij Ui Aij*Ui
 OBJ *** -12.000 1.0000 -12.000
 R1 1.0000 9.6000 9.6000
 REDUCED COST EXCLUDING BOUNDS -2.4000
 Accounting Error -MIP or NLP? 2.4000
 TRUE REDUCED COST 0.0000

Therein the user receives an indication that the objective function term for X1 is nonlinear. Also

an accounting error arises because the program cannot compute the level of reduced costs that

optimizer output says should be attainable. This occurs because the nonlinear terms have not

been expanded about the current solution. One the other hand, the POSTOPT output from the

solve in line generates the output as follows:

 ## X1
 EQN Aij Ui Aij*Ui
 OBJ *** -9.6000 1.0000 -9.6000
 R1 1.0000 9.6000 9.6000
 TRUE REDUCED COST 0.00000

Where in the output air has laminated because now the parameter for acts one in the objective

function has been expanded grams true value seats the four cities in reduced cost can be matched

exactly. The same sort of phenomenon happens terms of the row sum information. In particular,

the row sum information may in solve some terms from the Taylor’s series expansion that are

9-48

added owners constants to the right hand side thus the row sum information from the solve the

law and 9 appears as follows:

 ## OBJ

 VAR Aij Xj Aij*Xj
 Z 1.0000 -19.200 -19.200
 X1 *** -9.6000 0.40000 -3.8400
 X2 *** -9.6000 1.6000 -15.360
 Other Nonlinear -38.400
 =E= =E=
 RHS COEFF 0.00000E+00

The term in the above output labeled “other nonlinear” is a calculation of what the constant terms

in the Taylor’s series expansion has to be in order that this equation is satisfied and consistent

with the answer given back by the solver. This term will not disappear even when the Taylor’s

series expansion is updated because that expansion will in general generate constants. However ,

the nonlinear terms will be more accurate when the Taylor’s series expansion has been

constructed around the most recent solution point. In the first solve in line 8 the value of this

other nonlinear constant term was 49.6.

9.7 GAMSCHK, Post Optimality Calculations and MIPs

Another concern in the use of GAMSCHK involves post optimality analysis of mixed

integer programming problems. While the row summing information is as fully reliable Cassidy is

in the linear programming case, the POSTOPT budgeting results of require some caution in their

use and some clarification as to the basic nature. T and he real problem with the budgeting

information lies in the less well-defined nature of the duality information in a mixed integer

context. In particular, the shadow prices and marginals that are yielded during a mixed integer

programming solution may be partially defined by constraints which do not appear in the original

9-49

model, but which were temporarily added during the branch and bound solution process. In

particular the branch and bound solution process may yield reduced cost resolve reduced costs

and were have results which are not consistent with the traditional complementary slackness

principles that linear programming solution exhibit. Consider the following example

 1 variables z;
 2 integer variables x1,x2;
 3 equations r1,r2,r3,r4;
 4 r1.. z=e=3*x1+12*x2;
 5 r2.. -x1+2*x2=l=20;
 6 r3.. x1=g=4.1;
 7 r4.. x1+x2=l=25.1;
 8 model mip /all/
 9 option mip=gamschk;
 10 solve mip maximizing z using mip;

When this problem is solved budget for X1 appears is appears as follows

 ## X1
 SOLUTION VALUE 10.0000
 UPPER BOUND 100.000

 EQN Aij Ui Aij*Ui
 R1 -3.0000 1.0000 -3.0000
 R2 -1.0000 0.00000E+00 0.00000E+00
 R3 1.0000 0.00000E+00 0.00000E+00
 R4 1.0000 0.00000E+00 0.00000E+00
 TRUE REDUCED COST -3.0000

This solution nominally exhibits a violation of complementary slackness conditions. In particular,

the solution value for X1 is 10 which is between the lower and upper bounds of 0 and 100 so X1

is nonzero but between its bounds. Classical linear programming complementary slackness theory

would say that the reduced costs for this variable should be zero. However this variable as a

nonzero reduced cost of -3. This occurs because during the branch and bound algorithm

apparently a bound is imposed on X1 to bring it to the integer value of ten. Furthermore, the

reduced costs that are reported to the list file reflects the presence of that bound even know it is

9-50

not present in the original problem. Thus, when one solves mixed integer programming problems,

one has to be aware of the characteristics the solution algorithm as they will impact the character

of the budgeting that is generated when GAMSCHK runs.

9.8 Post Optimality Computations Without GAMSCHK

One may hand generate versions of the above tests without use of GAMSCHK by using

GAMS calculations. For example, in a resource allocation model the lines below could be used to

generate a budget.

PARAMETER BUDGET(J,*,*) BUDGET OF COLUMN J;
BUDGET(J,I,"AIJ")=A(I,J);
BUDGET(J,I,"SHADOWPRIC")=CONSTRAINT.M(I);
BUDGET(J,I,"PRODUCT")=A(I,J)*CONSTRAINT.M(I);

 BUDGET(J,"SUMINDIRCT","PRODUCT")=
SUM(I,BUDGET(J,I,"PRODUCT"));

BUDGET(J,"OBJECTIVE","PRODUCT")= C(J);
 BUDGET(J,"REDUCECOST,"PRODUCT")=

BUDGET(J,"SUMINDIRCT","PRODUCT")-
BUDGET(J,"OBJECTIVE","PRODUCT");

However, such coding is specific to a model structure and must be changed to

accommodate each model to be analyzed. We feel use of GAMSCHK is easier.

9-51

Table 9.1. Infeasible Model Example

Panel A: GAMS Setup of Infeasible Example

 1 variable objmax
 2 objmin;
 3 positive variables x1
 4 x2
 5 A
 6 equations obj
 7 obj2
 8 r1
 9 r2
 10 r3;
 11 obj.. objmax =e= 50*x1 +50*x2 -1000000000 * A;
 12 obj2.. objmin =e= A;
 13 r1.. x1 + x2 =L= 50;
 14 r2.. 50*x1 + x2 =L= 65;
 15 r3.. x1 + A =G= 20;
 16 model infe /obj,r1,r2,r3/
 17 model infe2 /obj2,r1,r2,r3/
 18 solve infe using lp maximizing objmax;
 19 solve infe2 using lp minimizing objmin;

Panel B: Big M solution (Model INFE)

 LOWER LEVEL UPPER MARGINAL
---- EQU OBJ . . . 1.000
---- EQU R1 -INF 1.300 50.000 .
---- EQU R2 -INF 65.000 65.000 2.0000E+7
---- EQU R3 20.000 20.000 +INF -1.000E+9

 LOWER LEVEL UPPER MARGINAL
---- VAR OBJMAX -INF -1.87E+10 +INF .
---- VAR X1 . 1.300 +INF .
---- VAR X2 . . +INF -2.000E+7
---- VAR A . 18.700 +INF .

Panel C: Phase I Solution (Model INFE2)

 LOWER LEVEL UPPER MARGINAL
---- EQU OBJ2 . . . 1.000
---- EQU R1 -INF 1.300 50.000 .
---- EQU R2 -INF 65.000 65.000 -0.020
---- EQU R3 20.000 20.000 +INF 1.000

 LOWER LEVEL UPPER MARGINAL
---- VAR OBJMIN -INF 18.700 +INF .
---- VAR X1 . 1.300 +INF .
---- VAR X2 . . +INF 0.020
---- VAR A . 18.700 +INF .

9-52

Table 9.2 List of All Possible Infeasible or Unbounded Conditions from GAMSCHK
Advisory Procedure.

 ----#### Executing ADVISORY

 ----### THESE VARIABLES ARE POTENTIALLY UNBOUNDED

 TRNSPORT(TABLES,FUNCT,PLANT1,PLANT2)
 TRNSPORT(TABLES,FANCY,PLANT1,PLANT2)
 TRNSPORT(CHAIRS,FUNCT,PLANT1,PLANT2)
 TRNSPORT(CHAIRS,FUNCT,PLANT2,PLANT1)
 TRNSPORT(CHAIRS,FANCY,PLANT1,PLANT2)
 TRNSPORT(CHAIRS,FANCY,PLANT2,PLANT1)
 SELL(PLANT1,FUNCT)
 SELL(PLANT1,FANCY)
 SELL(PLANT2,FUNCT)
 SELL(PLANT2,FANCY)

 ----### THESE EQUATIONS ARE POTENTIALLY INFEASIBLE

 RESOUREQ(PLANT1,SMLLATHE)
 RESOUREQ(PLANT1,LRGLATHE)
 RESOUREQ(PLANT1,CARVER)
 RESOUREQ(PLANT1,LABOR)
 RESOUREQ(PLANT1,TOP)
 RESOUREQ(PLANT2,SMLLATHE)
 RESOUREQ(PLANT2,LRGLATHE)
 RESOUREQ(PLANT2,CARVER)
 RESOUREQ(PLANT2,LABOR)

9-53

Table 9.3 Output from Infeasible Model with Artificials

Panel A GAMS Solution Output

**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 1 OPTIMAL
**** OBJECTIVE VALUE -9480000000000.0210

---- EQU RESOUREQ RESOURCES AVAILABLE
 LOWER LEVEL UPPER MARGINAL
PLANT1.SMLLATHE -INF -1100.000 -1100.000 1.0000E+9
PLANT1.LRGLATHE -INF -880.000 -880.000 1.0000E+9
PLANT1.CARVER -INF -500.000 -500.000 1.0000E+9
PLANT1.LABOR -INF -1750.000 -1750.000 1.0000E+9
PLANT1.TOP -INF -500.000 -500.000 1.0000E+9
PLANT2.SMLLATHE -INF -1400.000 -1400.000 1.0000E+9
PLANT2.LRGLATHE -INF -900.000 -900.000 1.0000E+9
PLANT2.CARVER -INF -1200.000 -1200.000 1.0000E+9
PLANT2.LABOR -INF -1250.000 -1250.000 1.0000E+9
PLANT2.TOP -INF . . .

---- EQU PLANTPROD PRODUCT BALANCE FOR A PLANT
 LOWER LEVEL UPPER MARGINAL
PLANT1.TABLES.FUNCT -INF . . .
PLANT1.TABLES.FANCY -INF . . .
PLANT1.CHAIRS.FUNCT -INF . . 100.000
PLANT1.CHAIRS.FANCY -INF . . 133.667
PLANT2.TABLES.FUNCT -INF . . 14.000
PLANT2.TABLES.FANCY -INF . . 18.000
PLANT2.CHAIRS.FUNCT -INF . . 102.750
PLANT2.CHAIRS.FANCY -INF . . 138.667

---- VAR MAKE NUMBER OF ITEMS MADE
 LOWER LEVEL UPPER MARGINAL
PLANT1.TABLES.NORMAL.FUNCT . . +INF -4.000E+9
PLANT1.TABLES.NORMAL.FANCY . . +INF -6.000E+9
PLANT1.CHAIRS.NORMAL.FUNCT . . +INF -2.70E+10
PLANT1.CHAIRS.NORMAL.FANCY . . +INF -3.70E+10
PLANT1.CHAIRS.MAXSML.FUNCT . . +INF -3.00E+10
PLANT1.CHAIRS.MAXSML.FANCY . . +INF -3.80E+10
PLANT1.CHAIRS.MAXLRG.FUNCT . . +INF -3.00E+10
PLANT1.CHAIRS.MAXLRG.FANCY . . +INF -3.80E+10
PLANT2.CHAIRS.NORMAL.FUNCT . . +INF -2.70E+10
PLANT2.CHAIRS.NORMAL.FANCY . . +INF -3.70E+10
PLANT2.CHAIRS.MAXSML.FUNCT . . +INF -3.00E+10
PLANT2.CHAIRS.MAXSML.FANCY . . +INF -3.80E+10
PLANT2.CHAIRS.MAXLRG.FUNCT . . +INF -3.00E+10
PLANT2.CHAIRS.MAXLRG.FANCY . . +INF -3.80E+10

---- VAR TRNSPORT NUMBER OF ITEMS TRANSPORTED
 LOWER LEVEL UPPER MARGINAL
TABLES.FUNCT.PLANT1.PLANT2 . . +INF .
TABLES.FANCY.PLANT1.PLANT2 . . +INF .
CHAIRS.FUNCT.PLANT1.PLANT2 . . +INF -2.250
CHAIRS.FUNCT.PLANT2.PLANT1 . . +INF -7.750
CHAIRS.FANCY.PLANT1.PLANT2 . . +INF .
CHAIRS.FANCY.PLANT2.PLANT1 . . +INF -10.000

---- VAR SELL NUMBER OF SETS SOLD
 LOWER LEVEL UPPER MARGINAL
PLANT1.FUNCT . . +INF .
PLANT1.FANCY . . +INF -2.000
PLANT2.FUNCT . . +INF .
PLANT2.FANCY . . +INF .

---- VAR ARTRESOUR ARTIFICIAL FOR RESOUREQ ROW
 LOWER LEVEL UPPER MARGINAL

Table 9.3 (continued)

PLANT1.SMLLATHE . 1100.000 +INF .
PLANT1.LRGLATHE . 880.000 +INF .
PLANT1.CARVER . 500.000 +INF .

9-54

PLANT1.LABOR . 1750.000 +INF .
PLANT1.TOP . 500.000 +INF .
PLANT2.SMLLATHE . 1400.000 +INF .
PLANT2.LRGLATHE . 900.000 +INF .
PLANT2.CARVER . 1200.000 +INF .
PLANT2.LABOR . 1250.000 +INF .
PLANT2.TOP . . +INF -1.000E+9

 LOWER LEVEL UPPER MARGINAL
---- VAR NETINCOME -INF -9.48E+12 +INF .

Panel B NONOPT Output

 ----### THESE VARIABLE BOUNDS MAY CAUSE INFEASIBLE
 Since their marginals are so large

 MAKE(PLANT1,TABLES,NORMAL,FUNCT) marg -0.4000000E+10
 MAKE(PLANT1,TABLES,NORMAL,FANCY) marg -0.6000000E+10
 MAKE(PLANT1,CHAIRS,NORMAL,FUNCT) marg -0.2700000E+11
 MAKE(PLANT1,CHAIRS,NORMAL,FANCY) marg -0.3700000E+11
 MAKE(PLANT1,CHAIRS,MAXSML,FUNCT) marg -0.3000000E+11
 MAKE(PLANT1,CHAIRS,MAXSML,FANCY) marg -0.3800000E+11
 MAKE(PLANT1,CHAIRS,MAXLRG,FUNCT) marg -0.3000000E+11
 MAKE(PLANT1,CHAIRS,MAXLRG,FANCY) marg -0.3800000E+11
 MAKE(PLANT2,CHAIRS,NORMAL,FUNCT) marg -0.2700000E+11
 MAKE(PLANT2,CHAIRS,NORMAL,FANCY) marg -0.3700000E+11
 MAKE(PLANT2,CHAIRS,MAXSML,FUNCT) marg -0.3000000E+11
 MAKE(PLANT2,CHAIRS,MAXSML,FANCY) marg -0.3800000E+11
 MAKE(PLANT2,CHAIRS,MAXLRG,FUNCT) marg -0.3000000E+11
 MAKE(PLANT2,CHAIRS,MAXLRG,FANCY) marg -0.3800000E+11
 ARTRESOUR(PLANT2,TOP) marg -0.1000000E+10

 ----### THESE EQUATIONS MAY CAUSE INFEASIBLE
 Since their marginals are so large

 RESOUREQ(PLANT1,SMLLATHE) marg 0.1000000E+10
 RESOUREQ(PLANT1,LRGLATHE) marg 0.1000000E+10
 RESOUREQ(PLANT1,CARVER) marg 0.1000000E+10
 RESOUREQ(PLANT1,LABOR) marg 0.1000000E+10
 RESOUREQ(PLANT1,TOP) marg 0.1000000E+10
 RESOUREQ(PLANT2,SMLLATHE) marg 0.1000000E+10
 RESOUREQ(PLANT2,LRGLATHE) marg 0.1000000E+10
 RESOUREQ(PLANT2,CARVER) marg 0.1000000E+10
 RESOUREQ(PLANT2,LABOR) marg 0.1000000E+10

9-55

Table 9.4 Output on Small Unbounded Example to Original Model

Panel A Unbounded Solution

**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 3 UNBOUNDED

 LOWER LEVEL UPPER MARGINAL

---- EQU OBJ . . . 1.000
---- EQU R1 -INF . . 3.000
---- EQU R2 -INF 20.000 20.000 2.000

 LOWER LEVEL UPPER MARGINAL

---- VAR OBJMAX -INF 40.000 +INF .
---- VAR X1 . . +INF .
---- VAR X2 . . +INF 2.000 UNBND
---- VAR X3 . 20.000 +INF .

Panel B NONOPT Output

 ----### LISTING NONOPTIMAL VARIABLES

 X2
 Level 0.00000000E+00 Marginal 2.0000000
 Low Bound 0.00000000E+00 Up Bound 0.30000000E+31

Panel C GAMS Solution Output after Bounds Applied

**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 1 OPTIMAL
**** OBJECTIVE VALUE 20000000040.0001

 LOWER LEVEL UPPER MARGINAL

---- EQU OBJ . . . 1.000
---- EQU R1 -INF . . 1.000
---- EQU R2 -INF 20.000 20.000 2.000

 LOWER LEVEL UPPER MARGINAL

---- VAR OBJMAX -INF 2.000E+10 +INF .
---- VAR X1 . 1.000E+10 1.000E+10 2.000
---- VAR X2 . 1.000E+10 +INF .
---- VAR X3 . 20.000 1.000E+10 .

9-56

Table 9.5 Solution for Large Unbounded Example

**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 1 OPTIMAL
**** OBJECTIVE VALUE 1193000234500.0020

 LOWER LEVEL UPPER MARGINAL
---- EQU OBJT . . . 1.000

---- EQU RESOUREQ RESOURCES AVAILABLE
 LOWER LEVEL UPPER MARGINAL
PLANT1.SMLLATHE -INF . 1100.000 .
PLANT1.LRGLATHE -INF . 880.000 .
PLANT1.CARVER -INF . 500.000 .
PLANT1.LABOR -INF 1750.000 1750.000 134.000
PLANT1.TOP -INF 350.000 500.000 .
PLANT2.SMLLATHE -INF . 1400.000 .
PLANT2.LRGLATHE -INF . 900.000 .
PLANT2.CARVER -INF . 1200.000 .
PLANT2.LABOR -INF . 1250.000 .

---- EQU PLANTPROD PRODUCT BALANCE FOR A PLANT
 LOWER LEVEL UPPER MARGINAL
PLANT1.TABLES.FUNCT -INF . . 482.000
PLANT1.TABLES.FANCY -INF . . 770.000
PLANT1.CHAIRS.FUNCT -INF . . 5.000
PLANT1.CHAIRS.FANCY -INF . . 5.000
PLANT2.TABLES.FUNCT -INF . . 14.000
PLANT2.TABLES.FANCY -INF . . 18.000
PLANT2.CHAIRS.FUNCT -INF . . 5.000
PLANT2.CHAIRS.FANCY -INF . . 5.000

---- VAR MAKE NUMBER OF ITEMS MADE
 LOWER LEVEL UPPER MARGINAL
PLANT1.TABLES.NORMAL.FUNCT . . +INF .
PLANT1.TABLES.NORMAL.FANCY . 350.000 +INF .
PLANT1.CHAIRS.NORMAL.FUNCT . . +INF -1350.000
PLANT1.CHAIRS.NORMAL.FANCY . . +INF -1092.000
PLANT1.CHAIRS.MAXSML.FUNCT . . +INF -1485.000
PLANT1.CHAIRS.MAXSML.FANCY . . +INF -1093.000
PLANT1.CHAIRS.MAXLRG.FUNCT . . +INF -1486.000
PLANT1.CHAIRS.MAXLRG.FANCY . . +INF -1094.000
PLANT2.CHAIRS.NORMAL.FUNCT . . +INF -10.000
PLANT2.CHAIRS.NORMAL.FANCY . . +INF -20.000
PLANT2.CHAIRS.MAXSML.FUNCT . . +INF -11.000
PLANT2.CHAIRS.MAXSML.FANCY . . +INF -21.000
PLANT2.CHAIRS.MAXLRG.FUNCT . . +INF -12.000
PLANT2.CHAIRS.MAXLRG.FANCY . . +INF -22.000

---- VAR TRNSPORT NUMBER OF ITEMS TRANSPORTED
 LOWER LEVEL UPPER MARGINAL
TABLES.FUNCT.PLANT1.PLANT2 . 1.0000E+9 +INF .
TABLES.FANCY.PLANT1.PLANT2 . 1.0000E+9 +INF .
CHAIRS.FUNCT.PLANT1.PLANT2 . 4.0000E+9 +INF .
CHAIRS.FUNCT.PLANT2.PLANT1 . . +INF .
CHAIRS.FANCY.PLANT1.PLANT2 . 6.0000E+9 +INF .
CHAIRS.FANCY.PLANT2.PLANT1 . 2100.000 +INF .

---- VAR SELL NUMBER OF SETS SOLD
 LOWER LEVEL UPPER MARGINAL
PLANT1.FUNCT . . 1.0000E+9 -102.000
PLANT1.FANCY . 350.000 1.0000E+9 .
PLANT2.FUNCT . 1.0000E+9 1.0000E+9 391.000
PLANT2.FANCY . 1.0000E+9 1.0000E+9 802.000

 LOWER LEVEL UPPER MARGINAL
---- VAR NETINCOME -INF 1.193E+12 +INF .

Table 9.6 NONOPT Output for Unbounded Model after Large Bounds Applied

 ----#### Executing NONOPT

 ----### THESE VARIABLES ARE POTENTIALLY UNBOUNDED
 Since their levels are so large

9-57

 TRNSPORT(TABLES,FUNCT,PLANT1,PLANT2) level 0.1000000E+10
 TRNSPORT(TABLES,FANCY,PLANT1,PLANT2) level 0.1000000E+10
 TRNSPORT(CHAIRS,FUNCT,PLANT1,PLANT2) level 0.4000000E+10
 TRNSPORT(CHAIRS,FANCY,PLANT1,PLANT2) level 0.6000000E+10
 SELL(PLANT2,FUNCT) level 0.1000000E+10
 SELL(PLANT2,FANCY) level 0.1000000E+10

9-58

Table 9.7 Tableau of Budgeting Example

Row Buy Misc. Sell Corn Sell Soyb. Sell Pork Prod Corn Prod. Soyb. Prod Hogs RHS

Objective Function -1 2.5 6 0.5 -75 -50 MAX

Land Available 1 1 # 600

Pork Balance 1 -1000 # 0

Soybean Bal 1 -50 # 0

Corn Balance 1 -120 20 # 0

Misc. Inp. Bal. -1 50 20 # 0

9-59

 Table 9.8 GAMS Solution for Budget Example Model

 LOWER LEVEL UPPER MARGINAL
---- EQU OBJ . . . 1.000
---- EQU LANDAVAIL -INF 600.000 600.000 2680.000
---- EQU PORKBALAN -INF . . 0.500
---- EQU SOYBEANBAL -INF . . 55.600
---- EQU CORNBAL -INF . . 24.000
---- EQU MISCINPBAL -INF . . 1.000

 LOWER LEVEL UPPER MARGINAL
---- VAR OBJMAX -INF 1.6080E+6 +INF .
---- VAR BUYMISC . 1.4700E+5 +INF .
---- VAR SELLCORN . . +INF -21.500
---- VAR SELLSOYB . . +INF -49.600
---- VAR SELLPORK . 3.6000E+6 +INF .
---- VAR PRODCORN . 600.000 +INF .
---- VAR PRODSOYB . . +INF .
---- VAR PRODHOG . 3600.000 +INF .

9-60

Table 9.9 Parts of POSTOPT Output for Budget Example Model

Panel A: Sell SOYB Variable

 SOLUTION VALUE 0.000000E+00

 EQN Aij Ui Aij*Ui
 OBJ -6.0000 1.0000 -6.0000
 SOYBEANBAL 1.0000 55.600 55.600
 TRUE REDUCED COST 49.600

Panel B: PRODCORN Variable
 SOLUTION VALUE 600.000
 EQN Aij Ui Aij*Ui
 OBJ 75.000 1.0000 75.000
 LANDAVAIL 1.0000 2680.0 2680.0
 CORNBAL -120.00 24.000 -2880.0
 MISCINPBAL 125.00 1.0000 125.00
 TRUE REDUCED COST 0.00000E+00

 Panel C: PRODSOYB Variable
 SOLUTION VALUE 0.000000E+00
 EQN Aij Ui Aij*Ui
 OBJ 50.000 1.0000 50.000
 LANDAVAIL 1.0000 2680.0 2680.0
 SOYBEANBAL -50.000 55.600 -2780.0
 MISCINPBAL 50.000 1.0000 50.000
 TRUE REDUCED COST 0.00000E+00

Panel D: PRODHOG Variable
 SOLUTION VALUE 3600.00
 EQN Aij Ui Aij*Ui
 PORKBALAN -1000.0 0.50000 -500.00
 CORNBAL 20.000 24.000 480.00
 MISCINPBAL 20.000 1.0000 20.000
 TRUE REDUCED COST 0.00000E+00

9-61

Table 9.10 Row Summing Example

Row Buy Misc. Sell Corn Sell Soyb. Sell Pork Prod CornProd Soyb.Prod HogsRHS
Objective Func -1 2.5 6 0.5 -75 -50 MAX
Land Available 1 1 # 600
Pork Balance 1 -150# 0
Soybean Bal 1 -50# 0
Corn Balance 1 -1200 20# 20
Misc. Inp. Bal. -1 125 50 20# 0

9-62

Table 9.11 GAMS Solution for Row Summing Example Model

**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 1 OPTIMAL
**** OBJECTIVE VALUE 1860055.0000

 LOWER LEVEL UPPER MARGINAL
---- EQU OBJ . . . 1.000
---- EQU LANDAVAIL -INF 600.000 600.000 3100.000
---- EQU PORKBALAN -INF . . 0.500
---- EQU SOYBEANBAL -INF . . 64.000
---- EQU CORNBAL -INF 20.000 20.000 2.750
---- EQU MISCINPBAL -INF . . 1.000

 LOWER LEVEL UPPER MARGINAL
---- VAR OBJMAX -INF 1.8601E+6 +INF .
---- VAR BUYMISC . 7.9502E+5 +INF .
---- VAR SELLCORN . . +INF -0.250
---- VAR SELLSOYB . . +INF -58.000
---- VAR SELLPORK . 5.4002E+6 +INF .
---- VAR PRODCORN . 600.000 +INF .
---- VAR PRODSOYB . . +INF .
---- VAR PRODHOG . 36001.000 +INF .

9-63

Table 9.12 POSTOPT Output for Row Summing Example Model

Panel A: PORKBALAN Equation
 VAR Aij Xj Aij*Xj
 SELLPORK 1.0000 0.54002E+07 0.54002E+07
 PRODHOG -150.00 36001. -0.54002E+07
 =L= =L=
 RHS COEFF 0.00000E+00
 SLACK EQUALS 0.00000E+00
 SHADOW PRICE 0.50000

Panel B: MISCINPBAL Equation
 VAR Aij Xj Aij*Xj
 BUYMISC -1.0000 0.79502E+06-0.79502E+06
 PRODCORN 125.00 600.00 75000.
 PRODSOYB 50.000 0.00000E+00 0.00000E+00
 PRODHOG 20.000 36000. 0.72002E+06
 =L= =L=
 RHS COEFF 0.00000E+00
 SLACK EQUALS 0.00000E+00
 SHADOW PRICE 1.0000

Panel C: CORNBAL Equation
 VAR Aij Xj Aij*Xj
 SELLCORN 1.0000 0.00000E+00 0.00000E+00
 PRODCORN -1200.0 600.00 -0.72000E+06
 PRODHOG 20.000 36000. 0.72002E+06
 =L= =L=
 RHS COEFF

20.00
 SLACK EQUALS 0.00000E+00
 SHADOW PRICE 2.7500

10-1

10-1

Chapter 10 Dealing with Models Which Abnormally Terminate

When running GAMS programs execution can abnormally terminate. Such terminations

(hereafter called failures) occur because, among other reasons: a) GAMS limits are reached; b)

solver limits are reached; c) computer memory is exhausted; d) the solver uses considerable time,

but does not reach an optimum; or e) the solver halts citing inability to make significant progress.

There are techniques available to correct such problems. Some require problem reformulation.

Others require GAMS code modifications. Yet others require the discovery of problems within

the GAMS code. The sections below cover ways to repair GAMS programs so as to remove the

causes of failures.

The first thing one should do when faced with a failure is examine the LST file. Special

attention should be paid to all places where four asterisks (****) appear. Such places may show

how to repair the problem encountered, and usually will report the solver termination status. One

should also examine the end of the listing. The LST file often contains messages such as

 “resources interrupt,”

“maximum executable code space exceeded,” or

 “iteration limit exceeded”

along with a suggested remedy. Unfortunately, such simple remedies are not always appropriate.

Namely, when the LST file contains a dump or when the solver stops for time limit, lack of

progress, or memory capacity, then more advanced remedies need be pursued. We will discuss

ways of resolving such difficulties under the topics of correcting excessive memory use; scaling;

degeneracy resolution; and problem reformulation.

10.1 Expanding GAMS and Solver Limits

There are a number of limits within GAMS and the associated solvers. Often the need to

10-2

expand these limits is indicated by messages on the screen or in the LST file indicating “resource

interrupt”; “maximum executable code space exceeded”; or “iteration limit exceeded.” Here we

list procedures to expand such limits.

10.1.1 Expanding Iteration, Resources and Work space

Users may discover messages indicating that a) the "iteration limit" has been reached; b)

"Work space" has been exceeded; c) or the program ran out of "resources.” These are

correctable using GAMS statements. Expanding the iteration limit is done using

OPTION ITERLIM = 100000;

where the 100000 may be replaced with any number. Similarly when a resources interrupt is

encountered, this can be fixed through the command

OPTION RESLIM = 2000000;

where the 2000000 can be replaced by any other number. The Work space limit can be expanded

by putting in the command

ModelName.Workspace = 30;

where the number (30) gives the Work space limit in megabytes. The number entered should not

exceed the megabytes on the computer and may need to be smaller than that estimated by the

solver so the problem fits on the computer.

10.1.2 Allowing More Executable Code Space

One can reach an error involving executable code space particularly when using large

numbers of executable statements in LOOPS. In that case an error message appears on the screen

about limits in PRESCAN and in the LST file the message appears.

 "Maximum Executable Code Size Exceeded."

In this case one would add the CODEX parameter to a GAMS submission statement, i.e.,

10-3

 GAMS MYMODEL CODEX = 1

or if that is insufficient use CODEX = 2 or more. Note this should only be employed when the

error is encountered as this option causes GAMS to use more memory. If this does not fix the

problem, then the amount of code within loops in the GAMS program must be reduced. This

would be done by cutting down on the number of statements in include files within LOOPS or by

not including basis files etc. Note, including a large GAMSBAS basis file in LOOPS can be the

cause of this error.

10.1.3 Expanding Solver Specific Limits

A number of the GAMS based solvers contain internal limits. For example, MINOS5 has

a major iteration limit and OSL has a Work space limit. In theses cases one needs to use either

the option file or the GAMS WORK SPACE command as discussed in 10.1.1.

Solver limits typically are expanded through the use of the options file. The options file is

invoked by using the command

Modelname.OPTFILE=1;

In turn, one creates a file named solvername.opt for example MINOS5.OPT or OSL.OPT in

which solver allowed options are specified. Thus, if one finds a message about the major iteration

limit in the LST file when using MINOS5, one would turn on the option file then specify the

MINOS5.OPT file containing the line

Major iterations 1000

or some other appropriate value. Note the default is 50.

A review of the solver manuals distributed with GAMS reveals the types of options that

can be specified for each solver. The LST file will often reveal what limits need to be relaxed to

expand solver limits.

10-4

One final note on option files is in order. GAMS permits the user to have multiple option

files. These are chosen by specifying the command turning on the option file with numbers other

than one. For example,

modelname.OPTFILE=4;

In such a case the option file name becomes

solvername.OP4 or MINOS5.OP4 in the case of MINOS5 usage.

Values up to 99 can be used. For values between two and nine the option file name extension is

OP followed by the number (i.e. OP5). For values between ten and ninety-nine the option file

name extension is O followed by the number (i.e.O78).

10.2 Finding Excessive Memory Use

GAMS models may fail because of excessive memory use. This is generally accompanied

by rather mystifying error messages such as “out of dynamic memory”, “segmentation fault” or

some obscure message accompanying a core dump. Such an error may occur at one of four

execution phases. GAMS can run out of memory when compiling, carrying out calculations,

generating a model or solving. Compilation stage memory errors virtually always mean the

problem is too big or the computer too small. Failures during the calculation phase involve initial

data computation, assignment of upper and lower bounds to variables, assignment of scaling

factors to variables/equations, or report writing. Model generation failures occur when GAMS is

setting up the numerical version of the model for passage to the solver. Failures during solver

execution occur because the optimizer needs additional memory to adequately store and solve the

problem. Failure during report writing involve the use of excessive memory space during report

writing. Different strategies are appropriate for resolving errors at each of these stages.

10.2.1 Memory Use Problems -- Root Causes

10-5

Memory induced failures occur when the computer is too small or more commonly when

the implementation inappropriately renders the problem too big. The later problem usually occurs

when the GAMS code has been set up with multidimensional entities which have excessive and

irrelevant elements.

Consider the following example. Suppose one defines a parameter with respect to seven

sets, each of which have ten elements. Suppose the sets are called I, J, K, L, M, N, and O. Now

suppose we define a variable X, a parameter Y and an equation Z each with all these sets

indicated as follows:

1 SET I /1*10/
2 J /1*10/
3 K /1*10/
4 L /1*10/
5 M /1*10/
6 N /1*10/
7 O /1*10/;
8 PARAMETER Y(I,J,K,L,M,N,O);
9 VARIABLE X(I,J,K,L,M,N,O)
10 OBJ;
11 EQUATION Z(I,J,K,L,M,N,O)
12 OB;
13 Y(I,J,K,L,M,N,O) =10;
14 X.UP(I,J,K,L,M,N,O) =10;
15 X.SCALE(I,J,K,L,M,N,O) =1000;
16 OB..
17 OBJ =E= SUM((I,J,K,L,M,N,O),X(I,J,K,L,M,N,O));
18 Z(I,J,K,L,M,N,O)..
19 X(I,J,K,L,M,N,O) =E= 8;

Execution of any of the statements 13-15 runs a 64-megabyte workstation out of memory during

model calculations as the number of joint cases of all seven parameters means that we need to

store 10 million numbers. Most computers would need over 100 megs of memory just to store

these commands by themselves. Lines 17 or 19 also run the computer out of memory during

model generation as 10 million variables are defined by 17 while 19 defines 10 million variables

and equations. A huge memory requirement would be unavoidable if this number of elements is

truly needed and a bigger computer needed. More commonly however the 10 million elements

are not all relevant and one needs to restrict the cases treated to particular interactions of the

seven subscripts. This is covered below and in Chapter 12.

10-6

10.2.2 GAMS Tools for Examining Memory Use

GAMS provides two ways that one can discover something about memory use. The easy

techniques involve use of the symbolic dump and the profile option. Let us address each of these

tools in sequence.

10.2.2.1 The Symbolic Dump

During any stage of GAMS program execution (not during compilation, model generation

or solution) it is possible to dump out memory use by each GAMS symbol. This dump is

requested by using the command:

OPTION DMPSYM;

In turn a dump of the memory use by all the symbols will be produced. This dump indicates

memory use at the point in program execution where the OPTION command occurs (memory use

up until that point will be reflected but memory use by subsequent statements will not). Suppose

we illustrate such a dump using the example model in Table 10.1, with line 33 activated. The

resultant output is in Table 10.2. Notice that in the dump, the lines numbered 1-42 are not

relevant as they simply report the space used by internal GAMS functions. However, starting in

line 43, all the sets, parameters, variables and equations used in the GAMS model are listed along

with a reporting of the amount of space they use. For example, in line 43, the dump indicates that

the set I is one dimensional, of length three elements (the other information on such lines will not

be discussed as it is of little value to the user). Similarly, notice that in line 50 that Y is shown to

be a seven dimensional parameter which has a length or memory usage of 2,187 elements while

line 51 shows Q has 27 elements. The element counts displayed are the number of entries for

each item and in this case are products of the maximum dimensions of the set elements (i.e., since

Q is defined over three sets each with 3 elements then 33 = 27 elements are defined). Thus, by

10-7

looking at the length parameter in the symbol dump, one can figure out the relative amount of

memory used for each data item at the place the option command is invoked. By examining items

with large lengths one can find out where the bulk of the memory is being utilized. (Not all

element counts use equal storage. For example, set storage uses a smaller word size and less

memory than most of the other data items). This dump can be requested anywhere within the

program as many times as desired.

10.2.2.2 The Profile Information

The symbolic memory use dump indicates how much space is used for each array but does

not necessarily tell where the arrays are becoming large. The GAMS profile option generates

information on where large data sets are being built. The profile option is invoked by one of two

means. One can alter the initial GAMS call to include commands like the following:

 GAMS MYMODEL PROFILE = 1 on DOS machines or
GAMS MYMODEL -PROFILE 2 on UNIX machines.

or one can insert an option statement into the program as follows:

 OPTION PROFILE=3;

The profile option causes GAMS to report the execution characteristics of individual statements.

The number after the profile request tells GAMS how deeply within LOOPS and IF statements to

report execution characteristics. When PROFILE = 1 is used, GAMS does not give information

within any IF statements or LOOPS, just information on the overall IF or LOOP. When

PROFILE = 2 is used, execution characteristics are given on statements within the first level of

LOOP and IF statements. PROFILE = 3 will go within the second level of IF and LOOP

statements, etc. Large profile values are needed to investigate execution characteristics within

deeply nested LOOP and IF statements but they can generate a lot of output if the loops are

executed repeatedly.

10-8

Let us look at a profile report (Table 10.3) generated by using OPTION PROFILE = 1 on

the model in Table 10.1. The profile command causes GAMS to give information on: a) the

GAMS statement number of the instruction being profiled; b) the symbol name being executed or

being worked on; c) the execution time of each statement; d) cumulative program execution time;

e) cumulative memory use; and f) the number of cases for which the statement is executed (if the

cases exceed one). In the example, the entry labeled starting with a 21 reports that executing the

21st line of the program (Table 10.1) which is an assignment of values into Y takes 0.08 of a

second execution time, contributing to 0.09 of a second of cumulative execution time while

executing the statement for 2,187 cases. Through this information, the profile indicates where

large numbers of cases and/or large execution times are encountered (i.e., statements 21, 22, 23,

28 and 26). In turn, one can examine those statements to see if they are generating large memory

requirements.

One notable thing about the profile output regards the way the profile output works with

respect to a solve statement. Notice that in the section involving lines 28-37, 28, 30, 26, and 37

in the profile output we have the output from the solver and notice that in generating the objective

function our memory use jumps from .3 to .8 megabytes. Then one generating the follow b it

generates from .8 up to .9. Thus one can monitor weather any of the equations are causing

memory problems during their generation, subject to the frailties of the output which will be

discussed below.

The profile option can generate a tremendous amount of output much of which is not

informative. Our example shows several statements are reported for which there is not

meaningful execution time. One can suppress this information by using a tolerance on the

minimum amount of execution time that a statement must use to be reported. In the case of the

10-9

example this is a very small amount of time and we could use

OPTION PROFILETOL = .01;

In bigger models one could for example, allow reporting of statements that took 1, 2, 10 or more

seconds of execution time. Notice in the example model the statements with the largest

execution times are the ones that go through thousands of cases or have terms summing over

thousands of set index possibilities.

.

10.2.3 Finding Memory Use Problems

Unfortunately while the above tools for memory use tracking are present in GAMS, their

use rarely allows easy discovery of the causes of memory use induced crash because of the way

computers and output buffers work. Namely, when a memory interruption is encountered the

computer halts leaving a partial LST file. The LST file is partial because it is periodically written

from internal output buffers. The information contained in the output buffer at the time of

termination is usually lost, thus the end of the LST file is lost. This means that, for example under

the profile option the statements executed just prior to encountering the problem will not be

reported in the LST file. In fact the last statements in the LST file may be ones executed a

considerable number of statements before the problem was encountered. This sets the stage for

the use of search strategies in finding memory utilization problems. However, before we reveal

those strategies we need to return to the small to large argument. When a large model is running

out of memory, one should consider using a small version of the model with the tools outlined

above to find large memory uses and if possible fix the problem, then come back to the big model

and see if that has corrected the problem. On the other hand, if the problem only exists in the big

model then one should use the approaches below.

10-10

10.2.3.1 Finding Excessive Compilation Memory Use

GAMS can run out of memory during compilation. This is an uncommon occurrence.

Nevertheless, when it does happen it means that the problem is too big or the computer too small.

One then must: a) reduce the problem size; b) or use a larger computer and/or c) use a larger

GAMS version (other than the demo). Little else can be said. However, if the user feels the

problem is not that big, then the small to large strategy of Chapter 5 should be employed. If that

does not reveal a problem, then use the search techniques discussed in the next section to find the

problem and repair the problem.

10.2.3.2 Finding Excessive Calculation Memory Use

When GAMS is doing pre or post solution calculations, it can run out of memory.

Commonly this is caused by runaway dimensions in parameter definitions where excessive

elements are defined. Statements involving assignments of parameters, variable bounds and

scaling factors are usually the cause. Unfortunately, when one runs out of memory during GAMS

calculations one does not often know where the error has arisen. The output buffer problem

discussed above means that the output in the LOG and LST files may not point to the place at

which the program terminated.

Thus, users often must search for the last properly executing statement. The basic way of

conducting such a search involves examining the end of the LST, LOG file or screen listing to

form a guess at the last line where execution was successfully accomplished. Notice only the

screen output will always indicate this (providing one is fast and attentive enough to read it)

because of the lost final output buffer. Regardless, once a successfully executing statement is

identified then one of the subsequent statements must be the source of the problem. Users then

can utilize the GAMS $ON/OFFTEXT syntax to search out the offending statement. This is done

10-11

by commenting out subsequent statements and seeing if the program runs. If the program runs

then one knows that the excessive memory use is encountered somewhere within the

$ON/OFFTEXT. Other uses move the $ONTEXT to allow more of the program to execute.

Continue until a statement is found that if authorized causes job failure. Suppose we found out

we were running out of memory in the example somewhere after statement 20. A search would

begin by putting an $ONTEXT between lines 20 and 21 and then an $OFFTEXT at the bottom.

If the reduced program ran, then we could move the $ONTEXT from between lines 20 and 21

down 8 statements to line 28 (allowing one half the remaining statements to execute). Then we

would submit the GAMS job again and probably find out that the program didn’t run. If so we

could move the $ONTEXT up to line 24 halving the number of potentially improper statements.

We would continue restricting the number of statements until we identified that for example

statement 21 was the cause of the difficulty. Having found the error we would likely then use the

$ conditions discussed in Chapter 12 to eliminate irrelevant cases correcting the excessive

memory use.

This is a time consuming procedure particularly in big models make it. Efficiency can be

increased by using GAMS save and restart files to save the part of the program that performs

satisfactorily (i.e., up to line 20) and then only execute the small part of the program in which the

problem is occurring (see the chapter on comparative model runs for an example).

10.2.3.3 Finding Excessive Model Generation Memory Use

The third place where GAMS may run out of memory is during model generation. This is

again a difficult stage at which to discover exactly where the problem is located, largely because

of the print buffer problem. One should, if possible, watch the screen and take note of the last

statement number which is executed i.e., if it says executing line 26 one would know the problem

10-12

is in line 26 or later. If this is not possible one should save the log file (using the LO2 option on

the GAMS call) along with the use of the memory status dump OPTION SYS7 = 1 and go

through these outputs to find the hypothesized last “good” statement. Also one should look at

the last memory status dump and make sure that an excessive amount of memory is not used up to

that point.

The search for the bad statement is then on. This search is conducted by forming a

restricted model. The restricted model may be formed by

1) commenting out (using asterisks or $ON/OFFTEXT) certain equations from the

equation listing and the equation definitions (.. Entries)

2) creating a model statement which omits a number of the equations, or by

3) following a small to large approach by restricting the sets over which equations are

generated and terms within the equations are summed. For example, if one had a

model in which there were constraints generated for every month, for a number of

years involving sums over every crop, the constraint and terms could be redefined

over subsets containing only January and February, the first and second years and

two selected crops.

In turn, the restricted model can be run to see if it works and to examine if the memory use.

The basic methodology for discovering the location and cause of excessive memory use is:

1) identify the last equation successfully executed;

2) identify the equations that have not been generated as of the last known point of

successful execution. Note, GAMS equations are generated in the order in which

the names appear in the EQUATION declaration section not in the order in which

the equation definitions appear (the ..syntax). (That is why statement 28 appears

10-13

before equation 26 in the SYS7 dump on Table 10.5). Thus, if equation B is

declared right before A and equation B is the last successfully generated, then one

can conclude that equation B along with all equations above it are satisfactory. So

then one would investigate the subsequent equations from equation A on down.

3) eliminate or simplify all subsequent equations using one of the procedures

discussed above.

4) resubmit the GAMS job.

5) if the model runs and more than one equation was eliminated or simplified restore

some of the earlier of these to full executing status. Thus reinclude at least the

first eliminated equation and if say four equations were eliminated include the first

two in some form of a binary search. Go to Step 4 if eliminating more equations, if

not go to Step 6.

6) now an equation causing the problem has been identified. One should then visually

investigate whether the problem is with the dimension of the equation or the

variables and coefficients generated by the terms within the equation. This would

be done by examining the equation to see if it contains a large number of different

equations because of its set dependence of whether the variables within it have a

large number of elements due to their set dependence. In the Table 10.1 example

we have 37 cases of the variable created when executing line 26 while line 28

involves that many variables and constraints. If a problem is found then fix it and

restore all equations to full status and regenerate the model.

7) If visual inspection is not conclusive then do numerical inspections. This is done

by reducing the number or size of the sets used in defining the equation and the

10-14

included terms or by commenting out selected terms until successful execution is

realized. One can support this examination with the symbol table, memory status

dump, profile, and SYS7=1 output as well as the GAMSCHK tools to gain more

information. Keep going until the problem is found or conclude a larger computer

is needed.

10.2.3.4 Finding Excessive Solver Memory Use

One of the nastier memory use faults involves the conclusion by a solver that it has run out

of memory and cannot proceed. In this case there are five possibilities:

a) The solver may overestimate needed Work space and quit when it can’t get that

much;

b) The solver may underestimate needed Work space and quit when it runs out;

c) The solver may be inefficient in terms of Work space and won’t fit, but an

alternative, more space efficient, solver may fit;

d) The problem may be too big for the computer;

e) The problem may be improperly too big;

The first two cases can be dealt with rather simply. All of the solvers are guessing when

they specify their “memory requirement”. The size of the basis inverse and the branch and bound

tree can vary widely depending on problem characteristics. Solvers take a conservative guess

which is often bigger than required. One can fix this by manually specifying a Work space limit

consistent with the computer memory as follows

OPTION WORK = 20; or

MODELNAME.WORKSPACE= 20;

where 20 give the space requested in megabytes. One can use a number smaller or larger than the

10-15

solver estimate and have the model work. However, it is possible that the Work space cannot be

made big enough.

Unfortunately, fixing the Work space does not always work. The third through fifth cases

may arise. Consider for now the third, it is possible the problem can be made to fit by switching

solvers. A recent example revealed that for the same problem OSL estimated its requirement at

69 megs, MINOS required 26 megs and CPLEX even less. Thus when one runs out of memory

one could switch to one of the more memory efficient codes. However, one should investigate

whether the problem is inappropriately too big.

The fourth and fifth cases involve models that are too big for the computer. Models may

be too big for the computer because of model specification errors or because of reality. There is

little that can be done about models that are really too big other than simplifying the model or

using a bigger computer. More commonly however the fifth case arises where models are

artificially large because of specification errors which cause GAMS to generate numerous

inappropriate equations and or variables.

When a solver fails due to memory limits one should investigate to make sure the model is

structurally correct. The primary tools for this are to run a solver PRESOLVE to see if a lot of

the model can be eliminated or use the GAMSCHK structural investigation tools to see if the

model is well formed. The GAMSCHK tools involve those discussed in Chapter 8 and the

GAMSCHK writeup such as BLOCKLIST or BLOCKPIC to see if the number of variables and

coefficients by block are reasonable. If there are a lot of irrelevant items then those cases should

be eliminated using the $ controls discussed in chapter 12. For example, one might only generate

transport variables for routes with viable transportation costs.

One can also have GAMS suppress generation of irrelevant variables by zeroing out their

10-16

upper bounds and then using the GAMS option command

modelname.HOLDFIX = 1

However, this option should be used sparingly as computer time and memory will be reduced

more if the GAMS instructions can be altered to eliminate consideration of those variables.

10.3 Scaling

Solution of mathematical programming problems usually requires manipulation of large

matrices. The heart of most solvers includes a sparse matrix inverter. Numerical problems often

arise within such procedures. Many numerical analysis studies have found that such algorithms

work better when the matrix to be inverted is well scaled. A poorly scaled model can cause

excessive time to be taken in solution or can cause the solver to fail.

There are several ways to approach the scaling issue within GAMS. First, one can ignore

scaling and let the solvers scale as they might. Second, one can use the GAMS solver option file

to enhance or, if needed, invoke scaling. Scaling is usually done by default, but in some solvers

like MINOS certain forms of scaling are only done on user request (for example nonlinear variable

scaling must be requested in MINOS). Lastly, one can prescale the model manually where all

coefficients associated with individual variables and/or constraints are divided (or multiplied)

through by scaling factors. This can be done using the GAMS scaling commands or by modifying

the model data. Each of these options will be discussed below. First, however we discuss the

basic concept and theory of scaling.

10.3.1 The Goal of Scaling

Scaling efforts should try to reduce the disparity between the coefficient magnitudes and

nonlinear variable gradients. The disparity between the coefficients should be reduced so that the

absolute value of their magnitude is within 100 to 1000. We try to scale models so that the

10-17

Max c1 X1 % c2 X2

s.t. a11 X1 % a12 X2 # b1

a21 X1 % a22 X2 # b2

X1 , X2 $ 0

equation coefficients fall in absolute value between 0.1 and 10 with possibly a few smaller and

larger numbers. This need not include right hand side and/or objective function coefficients.

There again we try to keep the numbers within a couple of orders of magnitude and often find it

desirable to uniformly divide the right hand sides and bounds through by a right hand side scalar.

However, GAMS does not contain a RHS/bound automatic scaling feature. Thus, such scaling

would have to be implemented manually.

10.3.2 The Effect of Scaling

Let us consider scaling theoretically. Given the LP problem

Suppose we wish to change the units of the coefficients for a variable (for example, multiplying by

one thousand). This requires substituting in a new variable with different units (for example in

thousands of acres rather than acres). Model consistency requires all coefficients associated with

a variable have a common denominator unit, this implies every coefficient in the column

associated with the new variable needs to be multiplied by the unit transformation factor. Thus,

we substitute in a new variable Xj
’ which equals the old variable divided by a scalar (Xj/SCj). We

also need to adjust the aij’s and Cj’s such that

aij' = SCj * aij

where aij' is the new coefficient, aij the old coefficient and SCj the unit transformation factor. Thus,

when we X1 we do the following. First, divide and multiply each term by the scaling factor.

Second, substitute in cj
’, ai

’
j, and Xj

’ yielding

10-18

Max SC1 c1 X1 / SC1 %c2 X2

s.t. SC1 a11 X1 / SC1 %a12 X2 # b1

SC1 a21 X1 / SC1 %a22 X2 # b2

X1 / SC1, X2 $ 0.

Max c1 X1 % c2 X2

s.t. a11 / SR X1 % a12 / SR X2 # b1 / SR

a21 X1 % a22 X2 # b2

X1 , X2 $ 0

Max c1 X1 % c2 X2

s.t. a11 X1 % a12 X2 # b1 / SH

a21 X1 % a22 X2 # b2 / SH

X1 , X2 $ 0

Max c '
1 X '

1 %c2 X2

s.t. a '
11 X '

1 %a12 X2 # b1

a '
21 X '

1 %a22 X2 # b2

X '
1 , X2 $ 0.

Where the c’, X’ and a’ are c, X and a items as the transformed after scaling.

Scaling is also done on the equations. When scaling equations; e.g., dividing through by

one thousand, every equation coefficient is divided by the scaling factor (SR) as follows:

where SR is a positive equation scaling factor.

 Two other types of scaling are also relevant. Suppose that the right-hand sides are

scaled, i.e., from single units of resources to thousands of units of resources. Then one would

modify the model as follows:

10-19

Max CX

s.t. AX # b

X $ 0

c '
j ' cj (

COLSCALj

OBJSCAL

a '
ij ' aij (

COLSCALj

ROWSCALi

b '
i ' bi (

1
ROWSCALi (RHSSCAL

One may also scale the objective function coefficients by dividing every objective function

coefficient through by a uniform constant (SO).

Scaling of the form above alters the solution. McCarl and Spreen derive a set of equations

relating the solutions before and after scaling. A summary of the effects of scaling is now in

order. Consider the LP problem

Now let us apply a set of positive scaling factors. The scaling factors are: a) COLSCALj for the

jth variable - a factor multiplying every coefficient under that variable; b) ROWSCALi for the ith

constraint - a factor dividing every coefficient in that constraint; c) OBJSCAL for the objective

function - a factor dividing every coefficient in the objective row; and d) RHSSCAL for the right

hand side - a factor dividing every right hand side value. The parameters of the model after scaling

are:

In turn after the scaling is completed the effect on the solution is presented in Table 10.6. This

shows for example that if we were to just scale the right hand sides and leave all other factors

10-20

Max 10X1 & 5000X2 & 4000X3 & 50000X4

s.t. X1 & 10000X2 & 8000X3 # 0

5X2 % 4X3 & 50X4 # 0

1500X2 % 2000X3 # 6000

50X2 % 45X3 # 300

X1 , X2 , X3 , X4 $ 0

Max 100000X1 & 5000X2 & 4000X3 & 50000X4

s.t. X1 & 1X2 & 0.8X3 # 0

5X2 % 4X3 & 50X4 # 0

1.5X2 % 2X3 # 6

X2 % 0.9X3 # 6

X1 , X2 , X3 , X4 $ 0

alone we would reduce the objective function and all solution variable values in effect dividing

them by the right hand side scaling factor.

10.3.3 An Example of Scaling

Suppose we adopt a relatively simple example to illustrate scaling. In particular consider

the example below where the numbers ranger from a maximum absolute value of 50,000 to a

minimum of one. We will try to reduce this disparity. However we should note that this problem

is already adequately scaled for any GAMS based solver, so this is just a numerical illustration of

how scaling proceeds, not a necessary exercise to make the solvers work. But if a much larger

problem had such numerical disparities problems could arise.

Suppose we begin by dividing all coefficients in the first constraint equation by 10000 and

multiplying all coefficients under X1 by 10000 while also dividing all coefficients in the third

constraint equation by 1000 and in the fourth by 50. The resultant model is

10-21

Max 10X1 & 0.5X2 & 0.4X3 & 0.1X4

s.t. X1 & X2 & 0.8X3 # 0

5X2 % 4X3 & X4 # 0

1.5X2 % 2X3 # 6

X2 % 0.9X3 # 6

X1 , X2 , X3 , X4 $ 0

Now suppose we finish by dividing all coefficients in the X4 column by 50 and divide all

coefficients in the objective function by 10000. The final scaled problem then becomes

The disparity in numbers is now much less. Note the only way that one does gain in reducing the

disparity in the numbers is by simultaneously scaling both variables and equations. Simply

dividing the rows through by say the largest coefficient without altering the variables will

generally not be effective.

10.3.4 Implementing Scaling in GAMS

GAMS users have two choices, let the solver scale or scale the GAMS model before it is

passed to the solver. When scaling the GAMS model one can use the built-in scaling features in

GAMS or can manually scale and descale the data. We recommend that solver scaling always be

done. In addition we feel GAMS supported, user defined model scaling should be used on

numerically difficult problems.

10.3.4.1 Using Solver Scaling

 Most of the GAMS solvers scale automatically. The notable exceptions are BDMLP and

CONOPT. Solver scaling is transparent to the user. (Users employing GAMSKEEP which

retains the scratch directories can find output about solver scaling in the GAMSSOLU.SCR file,

but otherwise the solver scales the data before solving and returns a descaled solution). Solver

10-22

scaling can usually be suppressed through the solver options file. However, we do not

recommend that this be done. Some solvers do contain additional scaling procedures that are

activated through the options file. Important optional scaling features are resident in MINOS5.

More will be said about this in the nonlinear scaling section below.

10.3.4.2 User Defined Model Scaling

User defined model scaling can be employed to improve over solver based scaling. Solver

based scaling is implemented using rules where for example, an equation is divided through by the

absolute value of the largest coefficient in that equation. Similarly, variables are divided through

by numbers derived from the absolute values of the coefficients in those columns. Such

mechanical scaling is done iteratively for a number of passes alternating between variable and

equation scaling. Scaling can usually be done in a better fashion by the user. The reason user

define scaling is often better is that it reflects knowledge of model structure. For example, in our

empirical example above the variable X1 is a sale variable which disposes of the products

produced by X2 and X3 as added up in the first equation. Thus to preserve integrity of units, we

scale X1 and the first equation by the same factor. This greatly narrows the disparity of the

coefficients in the first equation. Understanding of model structure often leads to simultaneous

scaling of multiple rows and columns which can greatly narrow coefficient disparity.

 Also, remember within most of the GAMS solvers the mechanically based scaling

procedures then will then also be used by the solver so one gets the benefit of double scaling.

However, in most cases the user can scale better because of the understanding of the model

structure. Also, remember in doing this scaling that it is usually to reduce the absolute value of

the coefficients to the neighborhood of unity where we recommend 0.1-100. However, this is not

to say that models without more disparate coefficients will not work.

10-23

10.3.4.2.1 GAMS User Defined Algebraic Scaling

GAMS provides features which allow one to specify scaling factors which are used

internally to scale the matrix and to automatically descale the solution. To invoke scaling one

must insert the command

 modelname.scaleopt=1;

where the modelname is that identified in the model and solve statements. Then for the variables

and equations to be scaled one must insert statements of the form

varname.scale(setelements)=k;

eqnname.scale(setelements)=k;

where varname is the name of one of the problem variables; eqnname is the name of one of the

problem equations; setelements is the associated set elements; and k is any number or GAMS data

item name.

(This scaling results in all the coefficients associated with a variable being multiplied by the

scaling factor or equation being divided by the scaling factor.) GAMS automatically descales all

solution information so the scaling

does not affect the solution output. However the LIMROW/LIMCOL output from GAMS does

display the elements after scaling and an option in GAMSCHK controls whether the data

displayed are before or after scaling.

Table 10.7 illustrates the scaling procedure in the context of the example we have been

using earlier in the chapter. The active statements used for the scaling are in lines 23 - 30 and are

reproduced below.

scalemod.scaleopt=1;
 obj.scale=10000;
 z.scale=obj.scale;
 avail.scale("r1")=10000;

10-24

 x.scale("x1")= avail.scale("r1");
 avail.scale("r3")=1000;
 avail.scale("r4")=50;
 x.scale("x4")=1/50;

The only additional comment about scaling that is in order involves the objective function. In

particular, note we scale the objective function row and variable in a consistent fashion.

More generally in a model with variables named PRODUCTION, and SALES with

equations named RESOURCES and PRODBAL one could introduce the statements

SCALFACTOR(ITEMS)=50;
SCALFACTOR(“CARS”)=100;
PRODUCTION.SCALE (ITEMS) = 1000;
SALES.SCALE (PRODUCTS = 2000;
RESOURCES.SCALE (TYPES,OTHERSET) = SCALFACTOR(ITEMS);
PRODBAL.SCALE ("CARS") = 50;

much as in the manner of defining upper or lower bounds.

10.3.4.2.2 Manual Scaling in a Model

One does not always need to rely on GAMS to do the scaling, although we recommend it.

Table 10.8 presents an example where scaling is done manually by introducing parameters giving

the scaling factors for the variables and equations on a term by term basis into the GAMS

algebraic statements for model variables and equations. Note, however, when employing manual

scaling that the solution is distorted and reverse scaling must be done to correct it. Thus, we do

not recommend manual scaling but rather use GAMS based scaling. That only leaves us without

a mechanism to do RHS scaling (dividing all equation constants by a factor) which is rarely

needed. In addition if RHS scaling is employed one must either remember to descale all solution

variable levels including the objective function value by multiplying them by the right hand side

scaling factor or must remember to interpret the solution levels in a manner where they are all in

say 1000's of units (where the RHS scale was 1000).

10-25

10.3.5 How are Scaling Factors Determined

The essential question when one considers scaling is which variables and equations should

be scaled and how much. This is obviously a numerical, empirical problem specific issue

depending on the model at hand and the exact coefficients. The basic methodology for

determining how much to scale is as follows:

Step 1 - Examine the empirical model first on a block by block basis then later on a

variable by variable and equation by equation basis and discover poorly

scaled model elements. Namely, identify those variables and/or constraints

which have the largest and smallest coefficients in absolute value. If these

far in excess of one and far less than one then scaling is in order. Ways of

gathering this information with GAMS and GAMSCHK is discussed

below.

Step 2 - Develop a set of scaling factors. For example, when all coefficients under a

variable or in an equation are all in excess of an absolute value of one, then

set up a scaling factor to divide all coefficients under the variable or in the

equation.

Step 3 Implement the scaling factors in GAMS then go back to step 1; but scale

the equations next and iteratively work over the variables and rows until

the coefficients converge in value.

Note, that in using scaling factors one will often be dividing through by numbers like

10,000 and also could be dividing through like numbers like 0.0001 to raise the absolute value of

the set of coefficients.

10-26

An essential step in the above procedure is numerically investigating the model to find the

appropriate magnitude of scaling factors. This numerical investigation means one needs to look at

the coefficients in the specific equations. This may be done either using the GAMS

LIMROW/LIMCOL options or the GAMSCHK MATCHIT, BLOCKPIC, BLOCKLIST,

PICTURE, or DISPLAYCR procedures. All of these procedures display the model after the

actions of scale parameters defined in GAMS have been applied (provided the DESCALE option

has not been implemented in GAMSCHK). MATCHIT, PICTURE and DISPLAYCR work on

individual variables and equations while BLOCKPIC and BLOCKLIST work on blocks. An

example, all of these applied to the unscaled example used in the last chapter appears in Table

10.9. There the LIMROW and LIMCOL listing in Panel A; the MATCHIT listing in Panel B

which shows the maximum/minimum absolute values for each equation, the DISPLAYCR in

Panel C and then the BLOCKLIST and BLOCKPIC outputs in Panel D and E. The

recommended procedure for using GAMSCHK is:

Step 1 Fix Block level scaling. Use BLOCKLIST and BLOCKPIC to find the maximum

or minimum absolute values of the coefficients in the blocks. If any variable or

equation blocks exhibit all coefficients significantly above or below one. If so,

scale the whole block to change the absolute maximum or minimum to something

close to one. Do the same to equations. Also consider whether simultaneous

variable and equation block scaling can reduce coefficient magnitude disparity.

Continue iteratively until all the block level phenomena have been worked out.

Step 2 Fix individual item scaling. Use MATCHIT, DISPLAYCR or PICTURE

and look at the size of the coefficients in variable and equations. In using

GAMSCHK make sure that DESCALE has not been turned on in the

10-27

options file. Note that in LIMROW, LIMCOL displays will contain the

coefficients after scaling not the coefficient before. Thus as scaling

proceeds one can identify the cumulative effect of all scaling.

By following the steps above one can reduce coefficient disparity so that the problem is

numerically easier. Remember that the solver will also try to improve the scaling so what one

should try to accomplish when doing user defined scaling is one to exert knowledge of the

structure of the model to improve scaling. For example, take an equation which is denominated in

the units of a commodity and scale both the sales and purchase activities for that commodities in

the same way that the units in the equation are scaled. In our example above the scale factors for

OBJ and Z as well as X1 and R1 were the same.

10.3.6 Scaling of Nonlinear Terms

Nonlinear terms are meritorious of special scaling efforts. Drud in his CONOPT

implementation pays particular attention to scaling diagnostics. His recommendation is that the

gradients of all nonlinear terms be scaled so that their values are one at optimality. This implies

several things.

a) Scaling should be done so that the absolute value of the nonlinear terms as

reported back by GAMS and GAMSCHK are close to one, much as in the case

with linear terms. However attention also needs to be paid to the gradients.

b) Since the numerical value of the nonlinear terms reported by GAMS and

GAMSCHK are Taylor series expansions of the nonlinear terms around the

starting point then one needs to use a starting point as close to the optimal solution

point as possible.

c) Scaling in the nonlinear solvers involves special considerations. MINOS5 has

10-28

special options controlling whether nonlinear scaling is done. CONOPT does not

scale internally frequently rejects problems because of poor scaling characteristics.

Further user defined scaling takes on a bigger role as these authors have worked

with cases where for example MINOS5 would not solve the model unless user

defined scaling was done. It’s own internal scaling only resulted in a model which

would not solve in a reasonable time period.

10.4 A Priori Degeneracy Resolution

Solution processes can exhibit a lack of progress due to degenerate cycling. Solvers like

MINOS5 on occasion give messages like "terminating since no progress made in last 1000

iterations" or "Sorry fellows we seem to be stuck.". Such cycling can often be avoided through

three types of fixes. First, one should insure that the scaling and, in nonlinear cases, starting point

characteristics of the problem are good. Second, some solvers like OSL perturb the problem

during the solution process to automatically avoid cycling, and one should make sure this is

permitted (it is the default case). Third, one can priori perturb the problem. Here we treat the

third case.

Degenerate cycling is caused when many pivots are done in the solution process where the

entering variable is essentially zero and where solvers continually add and remove the same

sequence of variables. Over the years we have found that such situations may be partially avoided

by insuring that equation blocks with right-hand-sides that are ordinarily zero actually have small

nonzero right hand sides (i.e., .001). However having them all have the same value can also be

problematic so we add numbers randomly centered around .001 to the right-hand-sides in order

to aid avoiding degenerate pivots (see McCarl,1977 for discussion). For example given the

equation

10-29

Balance(commodity)..-supply(commodity) + Demand(commodity)=L=O;

we would change the problem to

Balance(commodity)..-Supply(commodity) + DEMAND(commodity) =L=0.0001;

The magnitude of the small numbers should be specified so that they are not the same for all rows

and so that they do not materially affect the solution. Thus, they might be random or

systematically chosen numbers of the order 10-3 or 10-4 (although they can be larger or smaller

depending on the scaling and purpose of the constraints as in McCarl, 1977). We have always

observed reduced solution times with this modification. On occasion we have also found it

necessary to vary the value of nonzero right hand sides in an analogous fashion. In particular if a

model has a lot of constraints that are all less than or equal to a number like ten then we have

been known to add small random constants across the equations.

10.5 Reformulating a Model

Models can fail to solve running out of time, iterations, or making insufficient progress

because the problem is too difficult for the solver. One possible repair in such a case is

simplification of the optimization model formulation. This can be done by deleting constraints,

converting constraints to bounds, linearizing difficult nonlinear programs, adding constraints to

eliminate integer solutions, tightening numerical values in constraints relating integer and

continuous variables and fixing the values of integer variables, among many other things. Such

structural modifications are beyond the scope of these notes. Suffice it to say Luenberger;

Williams; McCarl and Spreen; and many others address problem reformulation. Also note the

presolves in OSL and CPLEX automatically do some of these functions.

10-30

10.6 Using Solver Options

One other way of speeding up solver performance particularly in the case of MIP and NLP

problems involves the use of solver options. The adoption of STRATEGY 48 and BBPREPROC

in OSL often is useful in dealing with MIPs while choice of the interior point method use may

help with large LPs. The use of the interior point and branching strategies such as varsel 3 or

heuristic 1 can be useful in CPLEX as can setting heurfreq to a fairly small number about 10 and

nodesel 2 or another value. Generally it is best to run a MIP solver with the default options and a

small node limit to see if the MIP seems to be solving and then if not try the alternative options.

If the MIP finds a solution quickly then one should try to prune the tree as fast as possible. If not

The scaling procedures can improve performance in MINOS.

10-31

Table 10.1 Example Model for Memory Discussion

 1 option profile=1;
 2 option profiletol=0.01
 4 option limrow=0;
 5 option limcol=0;
 6 set I /1*3 /
 7 set j /1*3 /
 8 set k /1*3 /
 9 set l /1*3 /
 10 set m /1*3 /
 11 set n /1*3 /
 12 set o /1*3 /
 13 parameter y(i,j,k,l,m,n,o);
 14 parameter q(i,j,k);
 15 variable x(i,j,k,l,m,n,o)
 16 f(i,j,k)
 17 obj;
 18 equation z(i,j,k,l,m,n,o)
 19 res(i,j,k)
 20 ob;
 21 y(i,j,k,l,m,n,o)=10;
 22 x.up(i,j,k,l,m,n,o)=10;
 23 x.scale(i,j,k,l,m,n,o)=1000;
 24 q(i,j,k)=10;
 25
 26 ob..
 27 obj =e= suM((i,j,k,l,m,n,o),x(i,j,k,l,m,n,o));
 28 z(i,j,k,l,m,n,o)..
 29 x(i,j,k,l,m,n,o) =l= 8;
 30 res(i,j,k)..
 31 f(i,j,k)=l=7;
 32 model memory /all/
 33 *option dmpsym;
 34 *option memorystat;
 35 *option sys7=2;
 36 option solprint=off;
 37 solve memory maximizing obj using lp;

10-32

Table 10.2 Example of Symbol Table

ENTRY ID TYPE DIM LENGTH DEFINED ASSIGNED DATAKNOWN

 1 MAPVAL FUNCT 0 0 False False False
 2 CEIL FUNCT 0 0 False False False
 3 FLOOR FUNCT 0 0 False False False
 4 ROUND FUNCT 0 0 False False False
 5 MOD FUNCT 0 0 False False False
 6 TRUNC FUNCT 0 0 False False False
 7 SIGN FUNCT 0 0 False False False
 8 MIN FUNCT 0 0 False False False
 9 MAX FUNCT 0 0 False False False
 10 SQR FUNCT 0 0 False False False
 11 EXP FUNCT 0 0 False False False
 12 LOG FUNCT 0 0 False False False
 13 LOG10 FUNCT 0 0 False False False
 14 SQRT FUNCT 0 0 False False False
 15 ABS FUNCT 0 0 False False False
 16 COS FUNCT 0 0 False False False
 17 SIN FUNCT 0 0 False False False
 18 ARCTAN FUNCT 0 0 False False False
 19 ERRORF FUNCT 0 0 False False False
 20 UNIFORM FUNCT 0 0 False False False
 21 NORMAL FUNCT 0 0 False False False
 22 POWER FUNCT 0 0 False False False
 23 JDATE FUNCT 0 0 False False False
 24 JTIME FUNCT 0 0 False False False
 25 JSTART FUNCT 0 0 False False False
 26 JNOW FUNCT 0 0 False False False
 27 EXECERROR FUNCT 0 0 False False False
 28 GYEAR FUNCT 0 0 False False False
 29 GMONTH FUNCT 0 0 False False False
 30 GDAY FUNCT 0 0 False False False
 31 GDOW FUNCT 0 0 False False False
 32 GLEAP FUNCT 0 0 False False False
 33 GHOUR FUNCT 0 0 False False False
 34 GMINUTE FUNCT 0 0 False False False
 35 GSECOND FUNCT 0 0 False False False
 36 EXECSEED FUNCT 0 0 False False False
 37 TIMESTART FUNCT 0 0 False False False
 38 TIMECOMP FUNCT 0 0 False False False
 39 TIMEEXEC FUNCT 0 0 False False False
 40 TIMECLOSE FUNCT 0 0 False False False
 41 ********** FUNCT 0 0 False False False
 42 FILE FILE 0 0 False False False
 43 I SET 1 3 True False True
 44 J SET 1 3 True False True
 45 K SET 1 3 True False True
 46 L SET 1 3 True False True
 47 M SET 1 3 True False True
 48 N SET 1 3 True False True
 49 O SET 1 3 True False True
 50 Y PARAM 7 2187 False True False
 51 Q PARAM 3 27 False True False
 52 X VAR 7 2187 False True False
 53 F VAR 3 0 False True False
 54 OBJ VAR 0 0 False True False
 55 Z EQU 7 0 False True False
 56 RES EQU 3 0 False True False
 57 OB EQU 0 0 False True False
 58 MEMORY MODEL 0 3 True True True

10-33

Table 10.3 Example of Profile Output

---- 3 OTHER 0.000 0.010 SECONDS
---- 4 OTHER 0.000 0.010 SECONDS
---- 21 ASSIGNMENT Y 0.080 0.090 SECONDS 2187
---- 22 ASSIGNMENT X 0.070 0.160 SECONDS 2187
---- 23 ASSIGNMENT X 0.050 0.210 SECONDS 2187
---- 24 ASSIGNMENT Q 0.000 0.210 SECONDS 27
---- 36 OTHER 0.000 0.210 SECONDS
---- 37 SOLVE INIT MEMORY 0.000 0.220 SECONDS
---- 28 EQUATION Z 0.490 0.710 SECONDS 2187
---- 30 EQUATION RES 0.000 0.710 SECONDS 27
---- 26 EQUATION OB 0.370 1.080 SECONDS 1
---- 37 SOLVE FINI MEMORY 0.310 1.390 SECONDS

10-34

Table 10.5 Output Under Sys7=1

---- 28 MEMORY MANAGEMENT STATISTICS

REC POOL SIZE NAME ACTIVE MAXACT NEWS DISPS
 1 1 8 SYMBHSH 58 58 58 0
 2 1 8 UELHSH 3 3 3 0
 3 1 8 JACREF 0 0 0 0
 4 1 8 PARREC 2214 2214 2214 0
 5 2 12 SYMBREF 0 0 0 0
 6 2 12 UELREF 0 0 0 0
 7 4 20 HDCREC 2187 2187 2187 0
 8 2 12 PD 0 2187 2187 2187
 9 3 16 CEL 13179 25216 28488 15309
 10 3 16 HDRREC 2187 2187 2187 0
 11 4 24 JACREC 2187 2187 2187 0
 12 4 24 COFREC 0 0 0 0
 13 5 32 RHS 0 2187 2187 2187
 14 4 24 UEL 3 3 3 0
 15 6 40 VARREC 2197 2197 2197 0
 TOTAL 24215 43898 19683
BLOCK SIZE = 4092 BLOCKS ALLOCATED = 177 TOTAL POOL ALLOC = 708K

---- 30 MEMORY MANAGEMENT STATISTICS

REC POOL SIZE NAME ACTIVE MAXACT NEWS DISPS
 1 1 8 SYMBHSH 58 58 58 0
 2 1 8 UELHSH 3 3 3 0
 3 1 8 JACREF 0 0 0 0
 4 1 8 PARREC 2214 2214 2214 0
 5 2 12 SYMBREF 0 0 0 0
 6 2 12 UELREF 0 0 0 0
 7 4 20 HDCREC 2214 2214 2214 0
 8 2 12 PD 0 2187 2214 2214
 9 3 16 CEL 13257 25216 28647 15390
 10 3 16 HDRREC 2214 2214 2214 0
 11 4 24 JACREC 2214 2214 2214 0
 12 4 24 COFREC 0 0 0 0
 13 5 32 RHS 0 2187 2214 2214
 14 4 24 UEL 3 3 3 0
 15 6 40 VARREC 2197 2197 2197 0
 TOTAL 24374 44192 19818

BLOCK SIZE = 4092 BLOCKS ALLOCATED = 178 TOTAL POOL ALLOC = 712K

---- 26 MEMORY MANAGEMENT STATISTICS

REC POOL SIZE NAME ACTIVE MAXACT NEWS DISPS
 1 1 8 SYMBHSH 58 58 58 0
 2 1 8 UELHSH 3 3 3 0
 3 1 8 JACREF 0 0 0 0
 4 1 8 PARREC 2214 2214 2214 0
 5 2 12 SYMBREF 0 0 0 0
 6 2 12 UELREF 0 0 0 0
 7 4 20 HDCREC 2215 2215 2215 0
 8 2 12 PD 0 2187 4402 4402
 9 3 16 CEL 13259 25216 47231 33972
 10 3 16 HDRREC 2215 2215 2215 0
 11 4 24 JACREC 4402 4402 4402 0
 12 4 24 COFREC 0 0 0 0
 13 5 32 RHS 0 2187 2215 2215
 14 4 24 UEL 3 3 3 0
 15 6 40 VARREC 2197 2197 2197 0
 TOTAL 26566 67155 40589
BLOCK SIZE = 4092 BLOCKS ALLOCATED = 190 TOTAL POOL ALLOC = 760K

10-35

Table 10.6 Relationships Between Items Before and After Scaling

Item

Symbol
Before
Scaling

Symbol
After

Scaling Unscaled Value in Terms of Scaled Value Scaled Value in Terms of Unscaled Value

Variables Xj Xj' Xj = X j'* (COLSCALj * RHSSCAL) Xj' = X j /(COLSCALj * RHSSCAL)

Slacks Si Si' Si= S i'*(ROWSCALi * RHSSCAL) Si' = S i / (ROWSCALi * RHSSCAL)

Reduced Cost zj - cj zj '- cj' zj - cj = (zj '- cj') * (OBJSCAL/COLSCALj) zj '- cj ' = (zj - cj) / (OBJSCAL/COLSCALj)

Shadow Price Ui Ui' Ui = Ui' * (OBJSCAL/ROWSCALi)) Ui '= Ui / (OBJSCAL/ROWSCALi))

Obj. Func. Value Z Z ' Z = Z' * OBJSCAL * RHSSCAL Z '= Z / (OBJSCAL * RHSSCAL)

10-36

Table 10.7 Example of GAMS Automatic Scaling

 panel a Model including scaling factors

 1 sets items names of variables /x1*x4/
 2 resources names of constraints /r1*r4/
 3 parameter
 4 objc(items) obj coefs /x1 10,x2 -5000,x3 -4000,x4 -50000/
 5 rhs(resources)resource availabilities /r3 6000,r4 300/;
 6 Table amatrix(resources,items) aij matrix
 7 x1 x2 x3 x4
 8 r1 1 -10000 -8000
 9 r2 5 4 -50
 10 r3 1500 2000
 11 r4 50 45 ;
 12 variables z objective function;
 13 positive variables x(items) variables;
 14 equations obj objective function
 15 avail(resources) resource limits;
 16 obj.. z=e=sum(items,objc(items)*x(items));
 17 avail(resources).. sum(items,amatrix(resources,items) *x(items))
 18 =l= rhs(resources);
 19 option limrow=4; option limcol=0;
 20 model scalemod /all/;
 21 option solslack=1;
 22 solve scalemod using lp maximizing z;
 23 scalemod.scaleopt=1;
 24 obj.scale=10000;
 25 z.scale=obj.scale;
 26 avail.scale("r1")=10000;
 27 x.scale("x1")= avail.scale("r1");
 28 avail.scale("r3")=1000;
 29 avail.scale("r4")=50;
 30 x.scale("x4")=1/50;
 31 solve scalemod using lp maximizing z;

Panel b formuation before scaling from solve at line 22

OBJ.. Z - 10*X(X1) + 5000*X(X2) + 4000*X(X3) + 50000*X(X4) =E= 0 ;
AVAIL(R1).. X(X1) - 10000*X(X2) - 8000*X(X3) =L= 0 ; (LHS = 0)
AVAIL(R2).. 5*X(X2) + 4*X(X3) - 50*X(X4) =L= 0 ; (LHS = 0)
AVAIL(R3).. 1500*X(X2) + 2000*X(X3) =L= 6000 ; (LHS = 0)
AVAIL(R4).. 50*X(X2) + 45*X(X3) =L= 300 ; (LHS = 0)

Panel c formulation after scaling from solve at line 31

OBJ.. Z - 10*X(X1) + 0.5*X(X2) + 0.4*X(X3) + 0.1*X(X4) =E= 0 ;
AVAIL(R1).. X(X1) - X(X2) - 0.8*X(X3) =L= 0 ; (LHS = 0)
AVAIL(R2).. 5*X(X2) + 4*X(X3) - X(X4) =L= 0 ; (LHS = 0)
AVAIL(R3).. 1.5*X(X2) + 2*X(X3) =L= 6 ; (LHS = 0)
AVAIL(R4).. X(X2) + 0.9*X(X3) =L= 6 ; (LHS = 0)

Panel d Solution under either solve

 LOWER SLACK UPPER MARGINAL
 R1 -INF . . 10.000
 R2 -INF . 1000.000
 R3 -INF . 6000.000 60.000
 R4 -INF 100.000 300.000 .

 LOWER LEVEL UPPER MARGINAL
 Z -INF 3.6000E+5 +INF .
 X1 . 40000.000 +INF .
 X2 . 4.000 +INF .
 X3 . . +INF -4.800E+4
 X4 . 0.400 +INF .

10-1

Table 10.8 Example of Manual Scaling in GAMS

Panel a GAMS Setup
 1 sets items names of variables /x1*x4/
 2 resources names of constraints /r1*r4/
 4 parameter objcoef(items) objective fun /x1 1, x2 -500, x3 -400, x4 -5000/
 6 rhs(resources) resource availabilities /r3 6000,r4 300/;
 9 Table amatrix(resources,items) aij matrix
 10 x1 x2 x3 x4
 11 r1 1 -1000 -8000
 12 r2 5 4 -50
 13 r3 1500 2000
 14 r4 50 45 ;
 16 Parameter varscale(items) variable scaling factors / x1 1, x2 .001 , x3 .001 , x4 .0002 /
 18 Parameter eqnscale(resources) equation scaling factors /r1 1, r2 .001 , r3 1 , r4 .01 /
 20 Scalar zscale /1/
 21 variables z objective function;
 22 positive variables xvar(items) variables;
 23 equations objfun objective function
 24 avail(resources) resource limits;
 26 objfun.. z=e=sum(items,objcoef(items)*varscale(items)/zscale*xvar(items));
 28 avail(resources).. sum(items,amatrix(resources,items)
 29 *varscale(items)/eqnscale(resources)*xvar(items))
 30 =l=rhs(resources)/eqnscale(resources);
 33 model scalemod /all/;
 34 solve scalemod using lp maximizing z;
 35 parameter unscalex(items,*), unscaleqn(resources,*;
 36 unscalex(items,"level")=xvar.l(items)*varscale(items);
 37 unscalex(items,"marg") =xvar.m(items)/varscale(items);
 40 unscaleqn(resources,"level")=avail.l(resources)*eqnscale(resources);
 41 unscaleqn(resources,"marg")=avail.m(resources)/eqnscale(resources);
 42 display unscalex,unscaleqn;

Panel B Row listing under manual scaling

---- AVAIL =L= resource limits
AVAIL(R1).. XVAR(X1) - XVAR(X2) - 8*XVAR(X3) =L= 0 ; (LHS = 0)
AVAIL(R2).. 5*XVAR(X2) + 4*XVAR(X3) - 10*XVAR(X4) =L= 0 ; (LHS = 0)
AVAIL(R3).. 1.5*XVAR(X2) + 2*XVAR(X3) =L= 6000 ; (LHS = 0)
AVAIL(R4).. 5*XVAR(X2) + 4.5*XVAR(X3) =L= 30000 ; (LHS = 0)

Panel C Solution under Manual Scaling

---- EQU OBJFUN . . . 1.000
---- EQU AVAIL resource limits
 LOWER LEVEL UPPER MARGINAL
R1 -INF . . 1.000
R2 -INF . . 0.100
R3 -INF 6000.000 6000.000 3.600
R4 -INF 13500.000 30000.000 .

 LOWER LEVEL UPPER MARGINAL
---- VAR Z -INF 21600.000 +INF .
---- VAR XVAR variables
 LOWER LEVEL UPPER MARGINAL
X1 . 24000.000 +INF .
X2 . . +INF -5.400
X3 . 3000.000 +INF .
X4 . 1200.000 +INF .

Panel D Transformed Scaled Solution

---- 42 PARAMETER UNSCALEX
 LEVEL MARG
X1 24000.000
X2 -5400.000
X3 3.000
X4 0.240

---- 42 PARAMETER UNSCALEQN
 LEVEL MARG
R1 1.000
R2 100.000
R3 6000.000 3.600
R4 135.000

11-2

Chapter 11 Working with Advanced Bases

The importance of an advanced basis has long been recognized in mathematical

programming. Models which take more than 24 hours to solve from scratch can be solved in less

than an hour from a good basis. GAMS can accept an advanced basis under certain conditions.

Generally, three possibilities are available with respect to bases. One can solve:

1) without a basis;

2) from a saved basis file; and

3) from a user suggested basis.

In small problems one should always solve without a basis. Before discussing the latter two

alternatives, let us review how GAMS forms a basis.

11.1 How Does GAMS Form a Basis?

GAMS forms a basis from stored marginal and level values for the model variables and

equations. This information comes from a previous solution or a user suggested starting point.

The information used in basis formation are:

a) Non zero levels for variables in the basis or super basis (for nonlinear problems).

These levels are generally not equal to the upper or lower bounds for the variable;

b) Non zero values equal to the upper or lower bounds for variables which are held at

their bound. Variables held at bound also have non zero marginals;

c) Zero levels and non zero marginals for variables not in the basis;

d) Zero marginals for nonbinding constraints; and

e) Non zero marginals for binding constraints.

In this information degeneracies and alternative optimals are indicated by some of the marginals for

11-3

nonbasic variables and/or constraints equaling EPS.

GAMS uses these data to suggest a basis. The exact form of the basis depends upon the

solver. For example, super basics are only suggested to nonlinear solvers. Similarly, bases

suggested to LP solvers consist of a number of basic elements no greater than the number of

equations.

11.2 Using an Advanced Basis

So now how does one cause an advanced basis to be used? The answer is that one must

provide the solution information as listed above. There are several ways of doing this. The easiest

case involves models solved in a series. In any procedure involving a sequence of solves, GAMS

automatically uses the solution from the most recent solve to suggest a basis for subsequent solves.

Obviously, this does not apply to the first solve in the GAMS program.

Particularly for first solves, but also in some other cases, one can suggest an advanced

basis. This is done by setting level and marginal values for the variables and marginal values for

the equations. This can be done by either using a stored solution from elsewhere or creating one.

Each of these possibilities and the repeated solve option will be discussed below.

11.2.1 Forming a Basis from Repeated Solves

One way that assures an advanced basis is used involves repeated solves of a model. The

fundamental method is to take a model like that in Chapter 8, then solve it for the base case, revise

some data and solve it again. Suppose we take the model from Table 8.1 and wish to solve it

twice, once for base conditions and once again doubling the transportation costs. We introduce

two statements at the bottom of the model where the first statement doubles the transportation

cost and the second causes another solve (see the file TWOTRAN). In this particular case, using

11-4

OSL one obtains the second solution in 1 iteration as opposed to the original cold start solve which

took 19 iterations.

Yet another way of retaining the basis involves a stored “base case” model. Frequently

modelers set up a “base case” model and then do alternative runs to see how the solution changes.

In this case, one can gain efficiencies by using the advanced basis from the base case model. To do

this we use the GAMS save and restart file commands. First, the base model is solved and its

solution saved. In turn, when GAMS restarts and solves, it uses the base solution to form the next

basis. Suppose we two files

FRSTPART which sets up a model and performs the first solve; and

NEXTPART which manipulates data and performs a second solve.

In such a case we would use a PC job control string like the following:

GAMS FRSTPART S=F1

GAMS NEXTPART R=F1

This would result in the FRSTPART file being executed and then execution restarted as if

NEXTPART was grafted on to the bottom of FRSTPART using all information available at the

end of its execution including the basis. Through this mechanism an advanced basis can be saved.

One could also use the commands:

GAMS FRSTPART S=Savefilename

GAMS MODIFY1 R=Savefilename

GAMS MODIFY2 R=Savefilename

which would result in the two modification files each being started utilizing the base model basis.

11.2.2 Providing a Basis to a Independent Model

11-5

Maximize 30X1 % 20X2 % 10X3

X1 % X2 % X3 # 10

X1 & X2 & 1.5X3 # 2

X2 % X3 # 8

X1 , X2 , X3 $ 0

Unfortunately, the above strategy can not be used when one needs to solve a problem from

scratch. However, one can suggest a basis for a new model if one is careful. Let us use an

example with two constraints and no upper bounds to illustrate this

A GAMS implementation appears in Table 11.1, Panel A. Two alternative basis structures appear

in Panels B and C either of which would compose the file simple.bas and would be included in line

39. In Panel B we define a version of the file simple.bas which contains exact numerical values for

the variables and marginals. The binding constraints are those with non-zero marginals (i.e. the

objective function, resource 1 and resource 2). The nonbinding constraints have zero marginals

(Resource 3). The basic variables have nonzero levels while the nonbasic variable (X3) has a

nonzero marginal. This input causes GAMS to suggest a basis with basic variables X1, X2 and the

slack for the third resource constraint. Solving the model with this basis results in an immediate

solution without any iterations.

An equivalent way of entering this basis through the simple.bas file is given in Panel C

where the nonzero data entries are just ones (one must insure the ones fall between the lower and

upper bounds). Both of these basis suggestion approaches result in solutions which take zero

iterations. However, the second approach needs to be used with more care. In particular, the

second approach cannot be easily used when dealing with NLP’s as super basics need to take on

11-6

precise values. The above approach can be used to either totally or partially specify a basis, a full

basis with all the proper nonzeros does not need to be specified. When specifying a full basis

degeneracy can cause problems as one must have basic elements for each row and must be careful

to have EPS specified for degenerate basic variables, non basic alternative optimals and for the

marginals of constraints with degenerate slacks.

11.2.3 Through External Files from Related Models

One can obtain a basis by using one from a related model. These may be saved either

through GAMSBAS or by using some mixture of PUT files and or displays in conjunction with

text editing.

GAMSBAS saves the level and marginal values after a solution. An example of its use is

provided in Table 11.2 (see the title MAKEBAS). The file invokes GAMSBAS in lines 38 and 41.

This constructs the saved basis file MAKEBAS.BAS which is presented in Table 11.3. That file

contains the solution information in the format of GAMS replacement statements. In turn, we

include that file before subsequent solves. This is done by inserting an include statement as shown

in line 35 of Table 11.4 or file USEBAS example.

The consequences of these actions are that the restarted problem solves in zero iterations.

Inclusion of such a basis has proven to be useful when we modify the structure or data of a model,

but feel that the basis from an earlier solved model would be a good starting point.

One may also retain a basis using other means. For example, before developing

GAMSBAS we at times displayed solution information and then reincluded it using a text editor

and replacement statements. We also used GAMS PUT file mechanisms to save information in the

appropriate format. We now recommend using GAMSBAS, however because the other forms

11-7

require model specific code and give difficulties when degeneracies and alternative optimals are

present.

11.2.4 By Guessing at a Starting Point

One can provide partial information to a heretofore unsolved model by guessing at which

variables will be in the basis and constraints will be binding. In turn, one can suggest a basis by

specifying appropriate values for the variable marginals and levels and the equation marginals.

There are strategies for constructing such guesses (for example, see Dillon).

11.3 Dealing with Problematic Bases

Unfortunately use of a basis can be a doubled edged sword. GAMS or a GAMS user can

suggest a basis that is unworkable in the solver. Solvers such as MINOS can reject a basis

indicating that after several factorizations (attempts at forming a basis) a nonsingular basis cannot

be formed. Similarly when using OSL, one may find that the algorithm terminates, reporting that it

can’t make acceptable progress. There are several things one can do when such a problem arises.

In our experience the difficulty usually arises when one uses saved basis from a model

which is significantly different in structure from the model to be solved. This occurs when

variables and/or equations in the model have been eliminated. Consequently, a number of

equations and variables integral to the basis are gone. What happens in such a case is there are

excess or insufficient basic variables specified for the number of equations and GAMS cannot

suggest a nonsingular basis. This can happen when variables that were basic in the eliminated

constraints are still present with non zero levels. In such a case GAMS draws out basic variables

in the order they appear until the number of basic variables suggested equals to the number of

equations arbitrarily dropping some possibly necessary variables. In such a case one could: a) use

11-8

the BRATIO option to cause GAMS to drop the basis; b) structure the model differently; c) reset

the basis; or d) try to do basis maintenance. Each of these options will be discussed below. Note

these options should not be used unless one is having problems. Usually GAMS can form an

adequate basis regardless of the model modifications.

11.3.1 Using BRATIO to suppress a basis

One can cause GAMS to ignore the advanced basis. GAMS includes an option called

BRATIO which, “causes the basis to be rejected if the number of basic variables is smaller than

BRATIO times the size of the basis.” If one is having difficulty with a basis, one can force it to be

discarded by setting the BRATIO value to one. The format of this command is:

OPTION BRATIO = 1;

This causes the advanced basis to be rejected and the solver to start from a cold start. Repeated

cold starts can be quite time consuming, therefore we recommend one try ideas in the subsequent

sections first.

11.3.2 Resetting the Basis

When one radically alters the model between solves and has a basis induced failure, one

could, under an assumption that the base model provides a good basis, revert to the “base model”

basis every time. Consider the following example. Suppose we wish to solve a model with and

without certain constraints on outgoing transportation. Suppose the base model does not have

extra transportation configuration constraints, but that each alternative model does. In such cases

one could run into problems with the basis. Namely, suppose one solves a model with one set of

configuration constraints, then drops those constraints and adds another very different constraint

set. Subsequently, the basis may not be adequate and one could try to go back to the base

11-9

unconstrained model. In order to do this the base case solution levels and marginals would need to

be retained in temporary data storage then reloaded.

Suppose we illustrate this point in the context of our Chapter 8 model. Let us introduce

two new constraints in a modified model (Table 11.5 or the file RESET). These are identified in

rows 88 and 89 and specified in lines 115-118. Three models are now defined with the model in

line 119 being the base model, the model in line 120 including the first optional constraint, and the

one in 120 including the second constraint. In turn, in line 126 we solve the base model then we

save the solution information retaining the variable levels and marginals and the equation

marginals. This is done using the parameters defined in lines 128-137 and the saves in lines 140-

156. In turn we solve the first alternative problem in line 158. Then we reestablish the base model

solution in lines 163-180 and solve the second model. Note this procedure is not necessary as the

model solutions do not fail when the basis is not manipulated as we can solve the models directly.

Nevertheless, using the basis resetting causes solution in 20 as opposed to 26 iterations for the last

solve. In more general models, this could lead to time savings and possibly the difference between

solution process success and solver failure.

Also note that one could achieve the basis reset using GAMSBAS by forming a basis file

and reincluding it. However if the solves and the GAMSBAS file include statement are in a

LOOP, one can easily run out of executable code space. This occurs since the replacement

statements for GAMSBAS can be numerous and one may have to use larger values of CODEX

(see the Chapter 10 discussion of this option). In fact, in some cases one cannot make CODEX

large enough to include all the statements. However, the GAMSBAS alternative may be superior

since the alternative is to implement storage and replacement statements for every variable and

11-10

equation.

11.3.3 Structuring a Formulation to Avoid Basis Problems

Solution of sequences of models with variables and equations being eliminated, restored, or

added can place the applicability of the basis in jeopardy. Sometimes such an exercise will cause

solver failure. Modelers may wish to consider an alternative management strategy which alleviates

these problems.

Rather than adding and removing constraints and variables with $ conditions, one can keep

those constraints and variables active in the model throughout the set of comparative runs. but

make them unattractive or nonbinding. Namely, if a set of variables is to be considered part, but

not all of time, one could (in a maximization context) conditionally subtract a very large number

from the objective function. With such an addition the variable takes on the characteristics of an

artificial variable. Namely, when it is supposed to be inactive, it is quickly driven from the basis.

For example, consider the two alternatives:

Objf.. obj = SUM(X, VAR(X)) + Y$ISYHERE;

Objf... obj = SUM(X, VAR(X)) + (1-1000000 $(ISYHERE EQ 0))*Y;

In the first, Y is eliminated if ISYHERE equals zero, while in the second it takes on an very large

negative value if ISYHERE equals zero. In the first case when Y was previously basic and we

eliminate it everywhere we now would have an incomplete basis with a variable missing. In the

second case if we just have the $ control in the objective function then the Y variable would be

present and could be in the initial basis but the optimization process would soon drive it out.

Similarly, if there are constraints that are active under some cases, one could enter a

mechanism to relax those constraints. For example, with a less than or equal to constraint one

11-11

could add a large number to the right hand side when the constraint is to be inactive. Thus, one

could write a constraint as follows.

Const$ISCON.. SUM(X,AIJ(X)*VAR(X)) =L= 1;

Const.. SUM(X, AIJ(X)*VAR(X))=L=1 + 1000000$(ISCON EQ O);

Under these circumstances the constraint would be eliminated in the first case if ISCON equals

zero. However, in the second case the constraint is always present but has a very large RHS

rendering it ineffective. These strategies maintain the same variables and equations for all bases

and avoid singularity problems.

11.3.4 Updating the Basis

One may also attempt to reflect model changes in the basis by manipulating stored levels

and marginals. For example, all the levels for a variable could be set to zero and the marginals be

made positive if all the constraints in which that variable appeared are eliminated. However, such

an exercise can be difficult. Dillon’s procedures may give guidance to those undertaking such an

effort.

11-12

Table 11.1 Simple Model Basis Example

Panel A Model

 2 sets var /x1*x3/
 3 constraint /r1*r3/;
 5 variables objfun;
 7 positive variables x(var);
 9 equations objective
 10 resource(constraint);
 12 parameter objcoef(var) objective function coeffients
 13 /x1 30, x2 20, x3 10 /;
 17 parameter rhs(constraint) constraint rhs's
 18 /r1 10, r2 2, r3 8/;
 22 table amatrix(constraint,var) aij matrix
 23 x1 x2 x3
 24 r1 1 1 1
 25 r2 1 -1 -1.5
 26 r3 1 1;
 28 objective..
 29 objfun =e= sum(var, objcoef(var) * x(var));
 31 resource(constraint)..
 32 sum(var, amatrix(constraint,var)* x(var)) =l= rhs(constraint) ;
 34 model mymodel /all/
 38 *option lp=gamsbas;
 39 *$include "simple.bas";
 41 solve mymodel using lp maximizing objfun;

Panel B Exact Basis
 OBJECTIVE.M = 1;
 RESOURCE.m ("R1") = 25;
 RESOURCE.m ("R2") = 5;
 RESOURCE.m ("R3") = 0;
 OBJFUN.l = 260;
 X.l ("X1") = 6;
 X.l ("X2") = 4;
 X.m ("X3") = -7.5;

Panel C Simplified Basis
 OBJECTIVE.m = 1 ;
 RESOURCE.m ("R1") = 1 ;
 RESOURCE.m ("R2") = 1 ;
 RESOURCE.m ("R3") = 0 ;
 OBJFUN.l = 1 ;
 X.l ("X1") = 1 ;
 X.l ("X2") = 1 ;
 X.m ("X3") = 1 ;

11-13

Table 11.2 Simple Example Generating a Basis Using GAMSBAS
 2 sets var /x1*x3/
 3 constraint /r1*r3/;
 5 variables objfun;
 7 positive variables x(var);
 9 equations objective
 10 resource(constraint);
 12 parameter objcoef(var) objective function coeffients
 13 /x1 30, x2 20, x3 10 /;
 17 parameter rhs(constraint) constraint rhs's
 18 /r1 10, r2 2, r3 8/;
 22 table amatrix(constraint,var) aij matrix
 23 x1 x2 x3
 24 r1 1 1 1
 25 r2 1 -1 -1.5
 26 r3 1 1;
 28 objective..
 29 objfun =e= sum(var, objcoef(var) * x(var));
 31 resource(constraint)..
 32 sum(var, amatrix(constraint,var)* x(var)) =l= rhs(constraint) ;
 34 model mymodel /all/
 38 option lp=gamsbas;
 41 solve mymodel using lp maximizing objfun;

11-14

Table 11.3 GAMSBAS Basis File

 OBJECTIVE.m = 1.00000000000 ;
 RESOURCE.m ("R1") = 25.0000000000 ;
 RESOURCE.m ("R2") = 5.00000000000 ;
 OBJFUN.l = 260.000000000 ;
 X.l ("X1") = 6.00000000000 ;
 X.l ("X2") = 4.00000000000 ;
$offlisting
 X.m ("X3") = -7.50000000000 ;

11-15

Table 11.4 Files Including a Basis

 2 sets var /x1*x3/
 3 constraint /r1*r3/;
 5 variables objfun;
 7 positive variables x(var);
 9 equations objective
 10 resource(constraint);
 12 parameter objcoef(var) objective function coeffients
 13 /x1 30, x2 20, x3 10 /;
 17 parameter rhs(constraint) constraint rhs's
 18 /r1 10, r2 2, r3 8/;
 22 table amatrix(constraint,var) aij matrix
 23 x1 x2 x3
 24 r1 1 1 1
 25 r2 1 -1 -1.5
 26 r3 1 1;
 28 objective..
 29 objfun =e= sum(var, objcoef(var) * x(var));
 31 resource(constraint)..
 32 sum(var, amatrix(constraint,var)* x(var)) =l= rhs(constraint) ;
 34 model mymodel /all/
 35 $include MAKEBAS.BAS
 36 solve mymodel using LP maximizing objfun;

11-16

Table 11.5 Example with Saved and Reset Basis

 9 * SECTION A SET DEFINITON
 11 SET PRODUCT PRODUCTS /TABLES, CHAIRS/
 12 TYPE TYPES OF PRODUCT /FUNCT ,FANCY/
 13 RESOURCE TYPES OF RESOURCES /SMLLATHE,LRGLATHE,CARVER,
 14 LABOR,TOP/
 15 METHOD PRODUCTION METHODS /NORMAL,MAXSML,MAXLRG/
 16 PLANT DIFFERENT PLANTS /PLANT1, PLANT2/;
 17 ALIAS(PLANT,PLANTS);
 18 * SECTION B DATA DEFINITION
 19 TABLE PRODCOST(PRODUCT,METHOD,TYPE) PRODUCTION COST
 21 FUNCT FANCY
 22 CHAIRS.NORMAL 15 25
 23 CHAIRS.MAXSML 16 26
 24 CHAIRS.MAXLRG 17 27
 25 TABLES.NORMAL 80 100;
 27 TABLE RES(RESOURCE,PRODUCT,TYPE,METHOD) USE OF RESOURCES IN PRODUCTION
 29 CHAIRS.FUNCT.NORMAL CHAIRS.FUNCT.MAXSML CHAIRS.FUNCT.MAXLRG
 30 SMLLATHE 8 13 2
 31 LRGLATHE 5 2 13
 32 CARVER 4 4 4
 33 LABOR 10 11 11
 34 + CHAIRS.FANCY.NORMAL CHAIRS.FANCY.MAXSML CHAIRS.FANCY.MAXLRG
 35 SMLLATHE 12 17 5
 36 LRGLATHE 7 3 15
 37 CARVER 10 10 10
 38 LABOR 8 8 8
 39 + TABLES.FUNCT.NORMAL TABLES.FANCY.NORMAL
 40 LABOR 3 5
 41 TOP 1 1 ;
 43 TABLE TRANSCOST(PRODUCT,TYPE,PLANT,PLANTS) TRANSPORT COST TO PLANTS
 45 PLANT1.PLANT2 PLANT2.PLANT1
 46 CHAIRS.FUNCT 5 5
 47 TABLES.FUNCT 14
 48 CHAIRS.FANCY 5 5
 49 TABLES.FANCY 18 ;
 52 TABLE PRICE(PLANT,TYPE) PRICE OF SETS
 53 FUNCT FANCY
 54 PLANT1 400 800
 55 PLANT2 425 850
 57 TABLE RESORAVAIL(RESOURCE,PLANT) RESOURCES AVAILABLE
 58 PLANT1 PLANT2
 59 TOP 500
 60 SMLLATHE 1100 1400
 61 LRGLATHE 880 900
 62 CARVER 500 1200
 63 LABOR 1750 1250 ;
 65 TABLE PRODPERSET(PRODUCT,TYPE) PRODUCTS PER SET
 67 FANCY FUNCT
 68 CHAIRS 6 4
 69 TABLES 1 1
 71 TABLE ACTIVITY(PLANT,PRODUCT,METHOD) TELLS IF A PLANT MAKES A PRODUCT
 72 TABLES.NORMAL CHAIRS.(NORMAL,MAXSML,MAXLRG)
 73 PLANT1 1 1
 74 PLANT2 1
 76 * SECTION C MODEL DEFINITION
 78 POSITIVE VARIABLES
 79 MAKE(PLANT,PRODUCT,METHOD,TYPE) NUMBER OF ITEMS MADE
 80 TRNSPORT(PRODUCT,TYPE,PLANT,PLANTS) NUMBER OF ITEMS TRANSPORTED
 81 SELL(PLANT,TYPE) NUMBER OF SETS SOLD;
 82 VARIABLES

 83 NETINCOME PROFIT;

11-17

 84 EQUATIONS
 85 OBJT OBJECTIVE FUNCTION (PROFIT)
 86 RESOUREQ(PLANT,RESOURCE) RESOURCES AVAILABLE
 87 PLANTPROD(PLANT,PRODUCT,TYPE) PRODUCT BALANCE FOR A PLANT
 88 trans1(PRODUCT,TYPE,PLANTS) transport configuration 1
 89 trans2(PRODUCT,TYPE,PLANTS) transport configuration 2;
 91 OBJT.. NETINCOME =E=
 92 SUM((PLANT,TYPE),
 93 PRICE(PLANT,TYPE) * SELL(PLANT,TYPE))
 94 -SUM((PLANT,PRODUCT,METHOD,TYPE)$ACTIVITY(PLANT,PRODUCT,METHOD),
 95 MAKE(PLANT,PRODUCT,METHOD,TYPE)*PRODCOST(PRODUCT,METHOD,TYPE))
 96 -SUM((PRODUCT,TYPE,PLANT,PLANTS)$TRANSCOST(PRODUCT,TYPE,PLANT,PLANTS),
 97 TRANSCOST(PRODUCT,TYPE,PLANT,PLANTS)
 98 *TRNSPORT(PRODUCT,TYPE,PLANT,PLANTS));
 100 RESOUREQ(PLANT,RESOURCE)..
 101 SUM((PRODUCT,TYPE,METHOD)$ACTIVITY(PLANT,PRODUCT,METHOD),
 102 RES(RESOURCE,PRODUCT,TYPE,METHOD)
 103 *MAKE(PLANT,PRODUCT,METHOD,TYPE))
 104 =l= RESORAVAIL(RESOURCE,PLANT) ;
 106 PLANTPROD(PLANT,PRODUCT,TYPE)..
 107 SUM(PLANTS$TRANSCOST(PRODUCT,TYPE,PLANT,PLANTS)
 108 ,TRNSPORT(PRODUCT,TYPE,PLANT,PLANTS))
 109 - SUM(PLANTS$TRANSCOST(PRODUCT,TYPE,PLANTS,PLANT)
 110 ,TRNSPORT(PRODUCT,TYPE,PLANTS,PLANT))
 111 + SELL(PLANT,TYPE)*PRODPERSET(PRODUCT,TYPE)
 112 =L= SUM(METHOD$ACTIVITY(PLANT,PRODUCT,METHOD),
 113 MAKE(PLANT,PRODUCT,METHOD,TYPE));
 115 trans1(PRODUCT,TYPE,PLANTS)..
 116 TRNSPORT(PRODUCT,TYPE,"PLANT1",PLANTS) =g= 2;
 117 trans2(PRODUCT,TYPE,PLANTS)..
 118 TRNSPORT(PRODUCT,TYPE,"PLANT2",PLANTS) =g= 2;
 119 MODEL FIRMb Base Model /OBJT,RESOUREQ,PLANTPROD/
 120 MODEL FIRM1 First Configuration /OBJT,RESOUREQ,PLANTPROD,trans1/
 121 MODEL FIRM2 Second Configuration /OBJT,RESOUREQ,PLANTPROD,trans2/
 125 * SECTION D SOLVE THE PROBLEM
 126 SOLVE FIRMb USING LP MAXIMIZING NETINCOME;
 127
 128 *Save the base model Basis
 129 set solinfo /level,marginal/
 130 parameter
 131 savMAKE(PLANT,PRODUCT,METHOD,TYPE,solinfo) basis info on make var
 132 savTRNSPO(PRODUCT,TYPE,PLANT,PLANTS,solinfo) basis info on trnsport vr
 133 savSELL(PLANT,TYPE,solinfo) basis info on sell var
 134 savnetinc(solinfo) basis info on netincome
 135 savOBJT basis marg for objt eq
 136 savRES(PLANT,RESOURCE) basis marg resoureq eq
 137 savPLANTPR(PLANT,PRODUCT,TYPE) basis marg plantprod eq;
 138
 139 *save variable levels
 140 savMAKE(PLANT,PRODUCT,METHOD,TYPE,"level")
 141 =MAKE.L(PLANT,PRODUCT,METHOD,TYPE);
 142 savTRNSPO(PRODUCT,TYPE,PLANT,PLANTS,"level") =
 143 TRNSPORT.L(PRODUCT,TYPE,PLANT,PLANTS);
 144 savSELL(PLANT,TYPE,"level")= SELL.L(PLANT,TYPE);
 145 savnetinc("level")=NETINCOME.L;
 146 *save variable marginals
 147 savMAKE(PLANT,PRODUCT,METHOD,TYPE,"marginal")
 148 =MAKE.M(PLANT,PRODUCT,METHOD,TYPE);
 149 savTRNSPO(PRODUCT,TYPE,PLANT,PLANTS,"marginal") =
 150 TRNSPORT.M(PRODUCT,TYPE,PLANT,PLANTS);
 151 savSELL(PLANT,TYPE,"marginal")= SELL.M(PLANT,TYPE);
 152 savnetinc("marginal")=NETINCOME.M;
 153
 154 savOBJT=OBJT.M;

11-18

 155 savRES(PLANT,RESOURCE)=RESOUREQ.M(PLANT,RESOURCE);
 156 savPLANTPR(PLANT,PRODUCT,TYPE)=PLANTPROD.M(PLANT,PRODUCT,TYPE);
 157
 158 SOLVE FIRM1 USING LP MAXIMIZING NETINCOME;
 159
 160 *reestablish basis to that stored in base model
 161
 162 *reestablish variable levels
 163 MAKE.L(PLANT,PRODUCT,METHOD,TYPE)
 164 =savMAKE(PLANT,PRODUCT,METHOD,TYPE,"level");
 165 TRNSPORT.L(PRODUCT,TYPE,PLANT,PLANTS)=
 166 savTRNSPO(PRODUCT,TYPE,PLANT,PLANTS,"level");
 166 SELL.L(PLANT,TYPE)= savSELL(PLANT,TYPE,"level");
 167 NETINCOME.L= savnetinc("level");
 168
 169 *reestablish variable marginals
 170 MAKE.M(PLANT,PRODUCT,METHOD,TYPE)
 171 =savMAKE(PLANT,PRODUCT,METHOD,TYPE,"marginal");
 172 TRNSPORT.M(PRODUCT,TYPE,PLANT,PLANTS)=
 173 savTRNSPO(PRODUCT,TYPE,PLANT,PLANTS,"marginal");
 174 savSELL(PLANT,TYPE,"marginal")= SELL.M(PLANT,TYPE);
 175 NETINCOME.M= savnetinc("marginal");
 176
 177 *reestablish equation marginals
 178 OBJT.M=savOBJT;
 179 RESOUREQ.M(PLANT,RESOURCE)=savRES(PLANT,RESOURCE);
 180 PLANTPROD.M(PLANT,PRODUCT,TYPE)=savPLANTPR(PLANT,PRODUCT,TYPE);
 181
 182 SOLVE FIRM2 USING LP MAXIMIZING NETINCOME;

12-1

Chapter 12 Increasing GAMS Program Execution Efficiency

The execution time and/or memory requirements for a GAMS program is a function of the

GAMS implementation and the users skill in exploiting the ways that GAMS executes code. Huge

efficiency gains can be achieved. In one case we were able to reduce the execution time of a

segment of GAMS code from 30 minutes to 15 seconds simply by rewriting a small amount of

GAMS code without changing the types of results being generated by the procedure at all.

In this chapter we cover a number of aspects of GAMS usage that can be used to improve

efficiency. The coverage involves both sides of the issue: diagnosis of whether and where there is

a problem and manipulation of the GAMS code to repair the problem. This chapter will most

directly address the execution time issue. Section 10.2 discusses memory issues in a more detailed

and also complementary fashion.

There is one important limitation to this chapter that the reviewer should note. The

coverage is aimed toward the reduction of the time to execute a problem within GAMS not within

the GAMS solvers i.e. the execution time within CPLEX or ZOOM or OSL or some other code.

Only brief mention of this latter issue will be made in section 12.4.

Readers should also note that the material in this chapter is not only useful for the repair of

specific models. Rather by studying and employing the efficiency enhancing techniques we display

herein, one can improve the effectiveness of future GAMS programming. For example, the section

on set addressing will reveal conventions that should be used in all GAMS programming yielding

efficiency gains without the need for model efficiency investigations

12.1 Is Efficiency a Concern

GAMS can take a lot of time or use a lot of space in computations and model setup.

12-2

Ultimately the judge of whether the time use is excessive is the user. Questions such as

Does the program take more time than you feel it should?

During execution does the screen show execution of one line number for a long time?

Is the procedure used often enough that efficiency is a concern?

need to be addressed. If the answer to any of these questions is a yes then further investigation is

in order to see whether there are poorly executing portions of the program.

12.1.1 Watching the Screen to Find Speed Problems

One way a modeler can get an indication of where timing problems might lie is to watch the

screen during execution. GAMS reports the line numbers which it is executing to the screen.

Thus if the program pauses on a line number for a moderately long time, then one would look at

that line as a cause of slow execution. For example in the model in Table 12.1 panel a during

execution the procedure pauses noticeably on the execution of lines 14,16,23,24,25 and 31, which

as we show in the next section are the longer executing statements in the program.

The approach of watching the screen is not always a very good way to proceed for two

reasons. First, staring at the screen for long time periods may not be effective and one may miss

certain statements, may identify statements improperly or get distracted and have to redo the

approach repeatedly. Second, GAMS line reporting is misleading when loops and if statements are

being executed. For example in the model in Table 12.2 GAMS pauses longest on statements

28,20,21,22. Line 28 is the loop statement itself while 20-22 are the LP model equations. The

individual calculations are not reported to the screen i.e. those on lines 29-31. Thus one would not

get any indication other that the loop is taking a lot of time.

12.1.2 PROFILE Use to Find Speed and Memory Problems

12-3

GAMS provides an alternative to attentive watching of the screen during execution.

Namely, one can obtain information about the execution time characteristics of a program by using

the PROFILE option. When a program is run with the PROFILE option active then GAMS

generates output in the LST file on the time it takes to execute each statement. PROFILE related

portions of the LST file associated with the model in Table 12.1 appear in Table 12.3.

The profile command causes GAMS to give information on: a) the GAMS statement

number of the instruction being profiled; b) the symbol name being executed or being worked on;

c) the execution time of each statement; d) cumulative program execution time; e) the number of

cases for which the statement is executed (if the cases exceed one); and f) cumulative memory use.

In the example, the entry labeled starting with a 14 reports that executing the 14th line of the

program (Table 12.1) which is an assignment of values into Z takes 4.07 seconds of execution

time, contributing to 5.66 seconds of cumulative execution time while executing the statement for

100,000 cases. Through this information, GAMS indicates where large numbers of cases and/or

large execution times are encountered (i.e., statements 12,14,16, 23, 24,25,29 and 31). In turn,

one can examine those statements to see if they can be reworked for faster execution.

The profile option is invoked by one of two means. One can alter the GAMS call to

include commands like the following:

 GAMS MYMODEL PROFILE = 1 on DOS machines or
GAMS MYMODEL -PROFILE 2 on UNIX machines.

or one can insert an option statement into the program as follows:

 OPTION PROFILE=3;

The number after the profile request tells GAMS how deeply within LOOPS and IF

12-4

statements to report execution characteristics. When PROFILE = 1 is used, GAMS does not give

information within any IF statements or LOOPS, just information on the overall IF or LOOP.

When PROFILE = 2 is used, execution characteristics are given on statements within the first level

of LOOP and IF statements. PROFILE = 3 will go within the second level of IF and LOOP

statements, etc. Large profile values are needed to investigate execution characteristics within

deeply nested LOOP and IF statements but they can generate a lot of output if the loops are

executed repeatedly.

The profile option can generate a tremendous amount of output much of which is not

informative. Our example shows several statements are reported for which there is not meaningful

execution time. One can suppress this information by using a tolerance on the minimum amount of

execution time that a statement must use to be reported. In the case of the example this is a very

small amount of time and we could use

OPTION PROFILETOL = 1;

In bigger models one could for example, allow reporting of statements that took 2, 10 or more

seconds of execution time. Notice in the example model the statements with the largest execution

times are the ones that go through thousands of cases or have terms summing over thousands of

set index possibilities.

Perhaps it is worthwhile to illustrate the effect of using a higher number PROFILE option.

The example in Table 12.2 is a looping version of the faster executing version of the example in

Table 12.1. The profile related output under the setting of PROFILE = 1 executions is given in

Table 12.4. (Note we have added the lines on the loop number and solve report to show program

progression). This output shows two notable things. First, all of the executing statements within

12-5

the loop are not profiled. In particular, only a composite time for the non model generation

statements is reported along with the generation time for each model statement. Second, the line

number chosen for reporting of the information is in this case the solve statement (line 32).

However in a loop without a solve then all execution time is reported solely for the LOOP

statement. For example running the model in Table 12,4 with lines 32 and 33 deactivated results in

a reporting only for the loop statement (line 28) without any reporting for the lines within the loop.

Now suppose we illustrate the consequences of setting the profile number to a higher level.

In particular suppose we run the model in Table 12,2 with PROFILE=2. Simultaneously we will

also set PROFILETOL=1 suppressing output for statements executing in less than a second. The

resultant output is in Table 12.5. There note that the output for the statements before the loop is

suppressed because they are fast. We then get details on how long each of the statements within

the loop take.

12.1.3 Looking Deeper into Complex Statements

Sometimes one runs profile and finds that the time problem is inside a tremendously long

statement. For example, we regularly run models where the objective function and some report

calculation lines are well over 100 lines long in the LST file containing 40 or so added terms. The

identification of a time problem in such a long statement still leaves one with the question of where

is the problem. In such cases the approach we take involves the use of on/off text and *’s to

deactivate parts of the code. Namely, if a multi-term piece of code spanning from listing lines

1182 to 1294 is identified as slow we would re-execute the code but split the term so say lines

12-6

1240 to 1294 are deactivated (surrounding them with an ontext - offtext sequence. Then if the

remaining lines still used the bulk of the time we would use the text features to deactivate further

code until the text addition greatly reduced the time use. We would then know that the last section

put into the text status contained the slow executing code. We would then proceed to search

therein until problematic portion of the code is identified.

12.1.4 A time related search strategy

Sometimes one cannot let the whole program run in order to find the memory problems. In

particular suppose that the program starts up and begins executing some statements in an IF or a

LOOP and 30 minutes later is at the same point. In such a case a number of strategies are relevant

to isolate where the problem occurs. These parallel the cases treated in section 10.2.3 on finding

memory use problems where they are more extensively discussed. The strategies are listed below.

12.1.4.1 Small to large

Use the small to large strategy of Chapter 5**** and look for timing problems with PROFILE

with smaller, representative data sets, and if possible fix the problem, then come back to the big

model and see if that has corrected the problem. On the other hand, if the problem only exists in

the big model then one should use the approaches below.

12.1.4.1 Search calculations for Time Hogs

When GAMS is doing pre or post solution calculations, it can use excessive time.

Commonly this is caused by a statement that treats a runaway number of cases where excessive

elements are referenced. Statements involving assignments of parameters, variable bounds and

scaling factors are usually the cause. Unfortunately, when time use is really excessive one does not

12-7

always wait for the PROFILE information but rather terminates the program. Also the line number

from screen watching may reference a loop or an if statement which encompasses multiple

statements. Thus the particular poorly executing statement may need to be discovered through a

search. Such a search involves first finding the well executing portion of the code just above the

problematic area then narrowing in to find the problem by finding the first poorly executing, time

hog statement. To identify a guess at the last good statement one can examine the end of the LST

file, the LOG file or watch the screen listing. Then one begins a search for the subsequent slow

statement. Users can employ the GAMS $ON/OFFTEXT syntax to search out the offending

statement basically by removing the statements from the last good one to the end of the program

from execution then advancing the ontext position until the problematic code is found(this is more

extensively discussed in 10.2.3.2). This can be a time consuming procedure particularly in big

models and efficiency can be increased by using GAMS save and restart files to save the part of the

program that performs satisfactorily and then only execute the small part of the program in which

the problem is occurring (see the chapter on comparative model runs for an example of saving and

restarting).

12.1.4.2 Finding Time Hogs in Model Generation

Another place where GAMS may exhibit excessive time use is during model generation.

This may be a difficult stage at which to discover exactly where the problem is located, largely

because of the print buffer problem as discussed in 10.2.3.2. One should, if possible, watch the

screen and take note of the last statement number which is executed i.e., if it says executing line 26

one would know the problem is in line 26 or later. If this is not possible one should save the log

file (using the LO=2 option on the GAMS call) to find the hypothesized last “good” statement.

12-8

The search for the bad statement is then on. This search is conducted by forming a

restricted model. The restricted model may be formed by

1) commenting out (using asterisks or $ON/OFFTEXT) certain equations from the

equation listing and the equation definitions (.. Entries)

2) creating a model statement which omits a number of the equations, or by

3) following a small to large approach by restricting the sets over which equations are

generated and terms within the equations are summed. For example, if one had a

model in which there were constraints generated for every month, for a number of

years involving sums over every crop, the constraint and terms could be redefined

over subsets containing only January and February, the first and second years and

two selected crops.

In turn, the restricted model can be run to see if it works and to examine time use.

The basic methodology for discovering the location and cause of excessive time use is:

1) identify the last equation successfully executed;

2) identify the equations that have not been generated as of the last known point of

successful execution. Note, GAMS equations are generated in the order in which

the names appear in the EQUATION declaration section not in the order in which

the equation definitions appear (the ..syntax). Thus, if equation B is declared right

before A and equation B is the last successfully generated, then one can conclude

that equation B along with all equations above it are satisfactory. So then one

would investigate the subsequent equations from equation A on down.

3) eliminate or simplify all subsequent equations using one of the procedures discussed

12-9

above.

4) resubmit the GAMS job.

5) if the model runs and more than one equation was eliminated or simplified restore

some of the earlier of these to full executing status. Thus re-include at least the first

eliminated equation and if say four equations were eliminated include the first two

in some form of a binary search. Go to Step 4 if eliminating more equations, if not

go to Step 6.

6) now an equation causing the problem has been identified.

12.1.4.3 Solution Time Hogs

Another place a lot of computer time can be used is in the solution process. Approaches

for resolution of that problem is discussed in chapter 10.

12.2 Improving Efficiency

Once one has found the statement(s) that are using the bulk of the time in program

execution, the question then becomes how can I speed up execution. Often a lot of the time use is

unnecessary. Often one can reduce execution time by better set addressing and referencing,

avoiding unnecessary cases, avoiding repeat calculations and or trading memory use for speed.

12.2.1 Set Addressing and References

One big time consideration in GAMS usage involves the way set indices are referenced

with respect to a data parameter. GAMS employs a sparse matrix data storage scheme. In

particular, the elements of an array X(A,B,C) are stored in an order such that say for the first A

element and the first B element all data associated with each C element appears. This is than

followed by all the C data for the 2nd B element, then all for the third etc. After that we then have

12-10

data in a similar fashion for the second A element then the third on through the end. GAMS

retrieves these data in the fastest manned when they are referenced in the same order as the

parameter is defined. Thus, for example, the statement Y(a,b,c)=X(a,b,c); executes faster than the

statement Y(a,b,c)=X(b,c,a). This occurs because in the first case the referencing of Xx is always

in its definition order whereas in the second case the referencing will proceed in order for Y but

will be out of order for X. In general a number of rules should be followed which will increase

execution speed.

1) Always try to arrange calculations, sums, equation references etc so to the extent

possible the referencing of large data arrays are in an order consistent with the

order of the sets in their definition.

2) Try for consistency to always define set references in the same order. For example

if one has the sets State, County, Industry and Process to the extent possible when

an item in the parameter, equation, variable, or any other item in the program

employs more than one of these sets arrange the reference so State is always the

first one mentioned, then county then Industry then Process. If one has items which

do not employ all the set names still follow their relative ranking.

3) When setting up sums or products, then put the set references in the same order as

defined for the data items.

An example which shows the time consequences of these rules is given in Table 12.1.

There note that in Panel A we have a model which does not obey the conventions while in panel B

we have a model which does. The relative execution times for a model on the same Pentium 120

laptop are as follows.

12-11

Line number
Profile time

 Panel A Slow Version
Profile time

 Panel B Faster version

2 0.00 0.00

12 1.54 1.81

14 4.06 3.24

16 3.52 1.76

27 0.00 0.00

28 0.00 0.00

29 0.00 0.00

23 8.46 5.82

24 10.33 9.01

25 9.22 6.43

29 1.10 0.82

29 1.98 2.09

29 0.32 0.27

31 4.18 2.58

Presolve Total 38.34 31.14

Solve Time 38.00 38.00

Post Solve Total 4.50 2.85

Grand Total 80.84 71.99

Note the overall time savings is about 10% of execution time. This is actually a smaller savings

than we expected. Sometimes we have seen performance differences in excess of 50%. Newer

versions of GAMS are improving data access time, however following the above rules in GAMS

programming will improve efficiency.

12.2.2 Avoiding Unnecessary Cases by Adding Conditions

12-12

The biggest time and memory hog in most GAMS programs involves programs which do

not adequately avoid treating unnecessary cases. For example one may define an array with set

indices for State and County then in sums have the program when dealing with a state index

counties that are in another state (i.e. Texas has 256 counties and the US over 3000 when

summing for Texas one should avoid treating all the counties in the other states. In such a setting,

it is desirable to define $ conditions to avoid consideration of unneeded or irrelevant terms. The

general approach is to reason out a condition that specifies when an equation, variable, computed

quantity or expression term is desired, then restrict the cases considered by the relevant

expression(s) using that condition. Such a strategy can be used to in the specification of equations,

calculations, and report writing statements. It is also desirable to introduce the most limiting

conditions as early as possible in the expression so as little calculation and data lookup is done as

possible before the condition is checked. Consider our state, county example. Suppose we had

land area by county and land type [landarea(county, landtype)], and wished to add land area by

state. Suppose we also had a two dimensional set telling which states were composed of which

counties [matchup(state, county)]. Now consider 3 pieces of code:

totalland(state)=sum((county,landtype),landarea(county,landtype)$matchup(state,county));

totalland(state)=sum((county,landtype)$matchup(state,county),landarea(county,landtype));

totalland(state)=sum(county$matchup(state,county),Sum(landtype,landarea(county,landtype)));

totalland(state)=sum(matchup(state,county),Sum(landtype,landarea(county,landtype)));

The last two would be the fastest. The first would go through all cases, the second

12.2.2.1 Calculation Statement Specifications

12-13

 Data defined over several sets can cause execution to be quite slow in performance. The

use of $ conditions in dealing with such data can yield dramatic time and space reductions. For

example, GAMS considers all cases of all subscripts when a parameter is defined. Thus the

statement

X(A, B, C, D, E) = 5

will execute for all possible members of A, B, C, D, and E. If for example, each of these sets had

20 members then 3.2 million values would be assigned taking considerable time and memory. If on

the other hand if only several hundred active cases were defined, then using the command

X(A, B, C, D, E) $ GOODCASE (A, B, C, D, E) = 5

where the variable GOODCASE equals one for the active cases and zero otherwise will greatly cut

down on computation time. The general approach is to reason out a condition that specifies when

an equation, variable, computed quantity or expression term is desired, then restrict the cases

considered by the relevant expression(s) using that condition. It is desirable to introduce the most

limiting conditions as early as possible in the expression so as little calculation and data lookup is

done as possible before the condition is checked.

Consider a state, county example. Suppose we had land area by county and land type

[landarea(county, landtype)], and wished to add land area by state. Suppose we also had a two

dimensional set telling which states were composed of which counties [MATCHUP(state,

county)]. Now consider 2 pieces of code:

totalland(state)=sum((county,landtype), landarea(county,landtype));

totalland(state)=sum((state,county,landtype)$MATCHUP(state,county),landarea(county,landtype)

);

12-14

The last would be the fastest. The first would go through all cases including counties

which are not in a state, the second would be much faster. A small example (landexam.gms) when

executed takes 3.03 seconds for the first case and 0.10 second for the latter (less than 1/30 th the

time).

12.2.2.1.1 An Aside -- Placement of Conditions

One important element in the use of conditions involves their placement in the string of

GAMS code. Consider two cases

x(i,j,k)$data(i,j,k)=1+y(i,j,k);

x(i,j,k)=1+y(i,j,k)$data(i,j,k);

These two expressions will have very different timing and results implications. The first will only

go through cases where the data array contains nonzero entries. The second will cover all cases

only adding in y when the data array have nonzero cases. In addition if the x array was previously

defined then the first expression will only redefine the cases where data are nonzero leaving the

other cases at their original values. The second will redefine the entire array.

This implies that when using GAMS maximum speed will be attained by placing conditions

so that they have maximum effect on limiting the cases considered. Thus,

1) the conditions should be placed as close to the beginning of the statement as

possible (for example on the left hand side of a calculation equation, before the ..

part of the model equations or in the earliest sums in calculations).

2) the most powerful condition eliminating the most cases with the least data look up

should be placed first; and

3) the modeler should pay attention to defining tight conditions when dealing with

12-15

time intensive parts of the GAMS code.

12.2.2.2 Equation Statement Specifications

When defining equations using the .. notation one can use $ conditions to condition the

existence of whole equations or of terms within equations. Conditions on the existence of an

equation are entered by specifying a $ in association with the .. part of the specification. This

causes equations to be skipped if the condition is not true. An example in the context of the

transportation problem appears in Table 12.6. Here a transportation problem with data for four

destinations and three sources is specified as if it had 300 destinations and 150 sources. The

equation suppression example involves a comparison of lines 36-37 and 39-40 which are

reproduced here.

34 slDEMANDEQ(MARKET)..
 35 SUM(PLANT, SHIPMENTS(PLANT, MARKET))=G=DEMAND(MARKET);

 39 inDEMANDEQ(MARKET)$demand(market)..
 40 SUM(PLANT, SHIPMENTS(PLANT, MARKET)) =G= DEMAND(MARKET);

In line 34-35 the slDEMANDQ equation is always generated so the model will have 300 of those

equations. However, in an alternative setup (inDEMANDQ line 39-40) the demand equation is

only generated when the quantity demanded (DEMAND(market)) is nonzero, thus only four

constraints will be present. These modifications cause the PROFILE timing report to indicate the

equation took 0.27 seconds to generate as opposed to 2.31 seconds without the conditional. Note

other speedups are possible in terms of the supply equation however to do it right these must be

incorporated with terms that suppress equation terms for places without shipment constraints as

discussed in the next section.

Conditions on the existence of terms in an equation are entered by specifying a $ in

association with the algebraic part of the equation specification. This causes terms to be skipped if

12-16

the condition is not true. An example of this also appears in Table 12.6 (trnspsu.gms) . A term

suppression example involves a comparison of lines 34-35 and 49-50.

 34 slDEMANDEQ(MARKET)..
 35 SUM(PLANT, SHIPMENTS(PLANT, MARKET))=G=DEMAND(MARKET);

 49 fsDEMANDEQ(MARKET)$demand(market)..
 50 SUM(PLANT$cost(plant,market), SHIPMENTS(PLANT, MARKET)) =G= DEMAND(MARKET);

Note in line 35 all the set elements are considered in the sum involving the SHIPMENTS variable

whereas in line 50 only those variables with a nonzero transport cost are considered. Thus, in

generating the equations rather than defining terms for all 45000 possible SHIPMENTS variables

only 12 will pass the test. Similar terms are suppressed in the supply and objective function

equations.

The net effect of activating the speedup conditionals in the fast as opposed to the slow

model is that PROFILE reports a total model generation time across the three equations of 0.11 as

opposed to 3.19 seconds. Also the model size is reduced from 45,001variables and 451 equations

to 13 variables and 8 equations. This also saves memory reducing use from 5.2 to 3.4 megabytes.

12.2.2.3 Specification of Variables in Models

The speedups in the last section involving the use of conditionals within equation terms

also suppressed variables. For example the lines

 45 TCOST =E= SUM((PLANT,MARKET)$cost(plant,market)
 46 , SHIPMENTS(PLANT,MARKET)*COST(PLANT,MARKET));
 47 fsSUPPLYEQ(PLANT)$supply(plant)..
 48 SUM(MARKET$cost(plant,market), SHIPMENTS(PLANT, MARKET))=L= SUPPLY(PLANT);
 49 fsDEMANDEQ(MARKET)$demand(market)..
 50 SUM(PLANT$cost(plant,market), SHIPMENTS(PLANT, MARKET)) =G= DEMAND(MARKET);

all suppressed the SHIPMENTS variables for which there were no transportation costs.

The treatment of variable in a model where equations and terms are being suppressed can

be a tricky enterprise. For example modification of lines 48 and 50 to drop the condition on

shipment cost

12-17

 45 TCOST =E= SUM((PLANT,MARKET)$cost(plant,market)
 46 , SHIPMENTS(PLANT,MARKET)*COST(PLANT,MARKET));
 47 fsSUPPLYEQ(PLANT)$supply(plant)..
 48 SUM(MARKET, SHIPMENTS(PLANT, MARKET))=L= SUPPLY(PLANT);
 49 fsDEMANDEQ(MARKET)$demand(market)..
 50 SUM(PLANT, SHIPMENTS(PLANT, MARKET)) =G= DEMAND(MARKET);

results in a model (transbad.gms) with 8 equations and1500 variables and an objective function

value of zero. This occurs because the model generates

a) all the outgoing shipments in line 48 to both real and zero cost demand points (an

extra 296*4 shipments); and

b) all the incoming shipments in line 50 from the zero cost supply points (an extra 147

*3 shipments)

The latter shipments cause the zero objective function as the model contains shipment possibilities

for plants 1-147 which go to each demand constraint which meet the demand (equation 50) have a

zero cost in the objective function and are not limited by a supply equation (since equation 48 is

suppressed when supply equals zero).

This introduces another of the Golden Rules of GAMS use. When suppressing key

equations and or variables be sure to suppress the variables in a consistent fashion across all

equations. Thus in our example everywhere the variable SHIPMENT occurs we condition on the

cost variable. In a more extensive model we might also have to condition shipments on having

nonzero supply at point of origin and nonzero demand at the destination. We would also have to

be careful to have the same condition at all points where the SHIPMENT variable appears.

Another possibility is available for variable suppression. One can set irrelevant variables to

zero by fixing their values using a statement like

 SHIPMENTS.FX(PLANT,MARKET)$(COST(PLANT,MARKET) eq 0)=0;

However this will causing the bad solution immediately above does not speed up anything causing

 bSuch a modification reduced run time for a report writer from 2 hours to less than 10
minutes.

12-18

all the GAMS operations to still be needed (see the model transfix.gms). One can go even further

and instruct GAMS to suppress generation of any variable held fixed by .FX commands using the

instruction

Modelname.holdfixed=1;

 However this does not speed up the GAMS computations up through model generation although

it does reduce the model passed to the solver down to the 13 variable, 8 equation version. Thus

for speedups regarding variables we recommend the use of the conditions in the equations.

12.2.2.4 Post Solution Report Writing Calculations

One may also use $ controls to suppress report writing calculations. For example the

equation:

Y=SUM((A,B,C,D,E,F,G), (DAT(A)+IT(B,C)+Y(D,E)+W(F,G))*X.L(A,B,C,D,E,F,G))

will perform much faster with the addition of a $ condition on the sum as follows

Y=SUM((A,B,C,D,E,F,G)$X.L(A,B,C,D,E,F,G),

(DAT(A)+IT(B,C)+Y(D,E)+W(F,G))*X.L(A,B,C,D,E,F,G));.

This will result in the calculation only being done when nonzero solution values (which are

commonly sparse) are involved and will avoid excess work.b

12.2.3 Better Using Sets

When one is trying to gain efficiency in model calculations there are several ways that set

referencing can be employed.

a) One should make sure that the ordering of sets in sums and calculations is as

12-19

consistent with the ordering of the data items as possible. (Note GAMS has recently

introduced internal optimization procedures which try to automatically reorder set

addresses to speed up things but this is still good modeling practice.)

b) In cases where relatively complex and time consuming calculations are needed to

see if an item should be calculated one can introduce a set that expresses this

relationship. Consider the state county land example again. In that

example(landexam.gms) we computed the set MATCHUP in lines

12 MATCHUP(state,county)$((ord(county) ge (ord(state)-1)*60+1)
 13 And (ord(county) le ord(state)*60+1))=yes;

then we used that set in our calculation

 17 totalland(state)=sum((county,landtype)$MATCHUP(state,county),
 18 landarea(county,landtype));

However we could have used the MATCHUP definition in the calculation

 17 totalland(state)=sum((county,landtype)
 18 $((ord(county) ge (ord(state)-1)*60+1)
 19 And (ord(county) le ord(state))),
 20 landarea(county,landtype));

Without any reference to the MATCHUP set. This latter revision takes 3.90

seconds to execute as opposed to the original 0.27. Thus if the need to match the

states and counties was prevalent in the code, it would be much faster to define the

set once and then repeatedly use it.

c) The introduction of sets which define relevant cases does not necessarily have to

involve conditionals. We could have the same effect as the MATCHUP conditional

in lines 17-18 above if we used the code

 17 totalland(state)=sum((MATCHUP(state,county),landtype),
 18 landarea(county,landtype));

In such a case we are summing over all cases of MATCHUP for a particular state
choice. This code will not be any faster than the proper use of conditionals but is

12-20

more compact.

d) One can place conditions on the sets in sums and should do it to eliminate as many

cases as possible as early as possible as discussed in Section 12.2.2.1.

12.2.4 Trading Memory for Time

The section above on better using sets introduces a more general topic. Namely, there are

a number of cases during GAMS use where one can in effect trade memory for time. In particular,

one can define parameters or depicting calculation intensive items then reuse those items in the

code. The cases of this worth mention involve repeat calculations and report writing ordering as

well as the set example of the last section.

12.2.4.1 Avoiding Repeat Calculations

One may store computationally expensive items which are needed in several places in the

execution of a GAMS code. For example in the AMS model (McCarl et al) the objective function

and a number of report writing calculations include the computation of variable cost summed

across about 100 inputs. Further for versions of the model the sum is the same across a tillage

systems, land treatments and rotations. The basic code looks something like

Z=SUM((CROP, TILLAGE, LANDTREAT, ROTATION),
ACREPLANT(CROP, TILLAGE, LANDTREAT, ROTATION)*

 SUM(INPUT, USAGE(INPUT, CROP)));

This code was revised by defining a parameter for the input usage sum and substituting i.e.;

INPUTUSE(CROP) =
 SUM(INPUT, USAGE (INPUT, CROP));

Z=SUM((CROP, TILLAGE, LANDTREAT, ROTATION),
ACREPLANT(CROP, TILLAGE, LANDTREAT, ROTATION)*

 INPUTUSE (CROP));

This avoided recalculating the sum for every TILLAGE, LANDTREAT, AND ROTATION case

12-21

in the many places the computation occurred. It saved more than 20 minutes in execution time for

each model run of which we do more than a thousand a year. However on cautionary note is in

order. Note that when one modifies the USAGE array during a study that when using this

procedure one will only have and effect on the model arrays like INPUTUSE are recalculated.

12.2.4.2 Attaining Natural Ordering for Displays

Another case of memory substitution involves the interplay of the order of items for output

and subscript ordering. Suppose for convenience one wishes a to have the array xsum(j,i)

computed as

xsum(j,i)=sum((k,l,m,n),x.l(i,k,l,m,n,j));

where the j,i order for xsum is chosen to best work with the GAMS DISPLAY statement output

formatting. In this case one may find it faster to compute a temporary sum

tempsum(i,j)=sum((k,l,m,n),x.l(i,k,l,m,n,j));

xsum(j,i)=tempsum(i,j));

turning the data around into the desired order after the more involved calculation rather than

treating the data out of order during that calculation.

12.4 Solver Efficiency Modifications

One place a lot of time can be used in a GAMS exercise is in the solver. As said above this

book does not deal extensively with solver and problem formulations issues. Nevertheless a few

comments are in order on problem numeric properties, advanced basis and starting point usage,

problem reformulation, solver control and solver choice.

12-22

12.4.1 Problem reformulation

When dealing with large problems solver efficiency is almost always increased by attention to

improving the numeric properties of the problem. Such topics are treated in chapter 10 under the

sections on scaling (10.3) and avoiding degenerate cycling (10.4)

12.4.2 Advanced Basis Usage and Starting Points

Solver efficiency is almost always enhanced by the provision of an improved starting point.

This point is important in LP and sparse NLP problems for the formation of an initial basis as

discussed in Chapter 11. It is also important in NLPs as the initial Jacobian and gradients are

formed using the starting point. The best possible starting point should be used as close as

possible to the optimal solution, providing as full a basis as possible.

12.4.3 Problem reformulation

One can also change the optimization model formulation by deleting constraints, converting

constraints to bounds, linearizing difficult nonlinear terms, adding constraints to eliminate integer

solutions, and fixing the values of integer variables, among many other things. Details on such

structural modifications are beyond the scope of these notes. Suffice it to say Luenberger;

Williams; McCarl and Spreen; and many others address problem reformulation aspects of this topic

while the presolves in OSL and CPLEX automatically do some of these functions. Also the reader

should note that

a) Linearization of difficult nonlinear terms can be a real boon to efficiency allowing

these authors to alter the time for completion of a solve sequence from 6 days to 6

hours in one case.

12-23

b) Tightening of constraints in MIP is a very important endeavor, The addition of

constraints better reflecting interlinkages both between feasible values of alternative

integer variables and between integer and continuous variables has in more than one

instance cut solution time for us by more than a factor of one hundred.

12.4.4 Solver Choice

One important but difficult to address topic involves solver choice. GAMS provides access

to at least a dozen solver with at least half a dozen of them applicable to for example linear

programs. Solver choice can greatly influence solution times. An experiment 2 years ago with

solution of a sequence of large LPs took 6 days on MINOS5, 18 hours on OSL and 6 hours on

CPLEX. A similar experiment on a MIP showed OSL was the best performer but other

experiments have favored CPLEX. Generally all that can be said is that the different solvers do

perform differently and by choice of solver, along with solver options, one can substantially alter

solution time. Several factors should be taken into account when choosing a solver in situations

where execution time is an important consideration:

a) Get a solver fundamentally designed to solve the type of problem you are

addressing. Solvers like MINOS5 and CONOPT while they can solve LPs are

designed for NLPs. Find this out by consulting the solver manuals distributed with

the GAMS system.

b) Investigate how current the solver is? Some of the GAMS solvers are the subject

of continuing research and improvement. Others have remained essentially static

for as long as a decade.

c) Find out whether the solver is a commercial product that is maintained by a group

12-24

and sold industrially or whether it is largely academic, this may have implications

for its continued success and for bug fixing.

d) Start simple first. You maybe happy with the default solver which comes with

GAMS (i.e. BDMLP for LPs). However you may find a need for better

performance.

e) Ask experienced users about which solver you should buy for your problem type.

Try the GAMS email list for information (GAMS - L@vm.gmd.dc)

f) If still in doubt try to arrange a demonstration licence through GAMS

(www.gams.com) and test alternatives for problem versions.

12.5 GAMS and Solver Options

When using the GAMS based solvers one can alter performance by manipulating solver

parameters using option statements within GAMS or parameters within the solver option files.

The performance alteration largely falls into general options or solver specific options. In terms of

general options, one can alter OPTCR or OPTCA which are relative and absolute optimality

criteria. One can also manipulate work space allowing the solver more or less memory to operate

within. Also, through a .OPT file one can put in specific items that affect the relative performance

of the solver. For example, in CPLEX one can affect branching direction, tolerances, number of

solutions, and whether or not the pre-solve is used. In OSL one can manipulate the type of

solution method to be used, ,pre-solve usage, scaling, mixed integer strategy and many other

factors. For the naive user probably the most important ones are the optimality criteria tolerances.

Experienced users may find that they need to set a number of mixed integer and/or nonlinear

12-25

options.

12-26

Table 12.1 Example of Speedups Through Better Set Addressing

Panel A. Program before set index reordering

 4 option profile=1;
 6 Set a /1*10/
 7 B /1*10/
 8 C /1*10/
 9 D /1*10/
 10 e /1*10/
 11 parameter x(e,d,c,b,a);
 12 X(e,d,c,b,a)=10;
 13 parameter z(a,b,c,d,e);
 14 z(a,b,c,d,e)=x(e,d,c,b,a);
 15 parameter y;
 16 Y=sum ((a,b,c,d,e),z(a,b,c,d,e)*x(e,d,c,b,a));
 17 variables obj
 18 Positive variables var(e,b,a);
 19 equations objeq
 20 R(b,c,d)
 21 q(a,b,c);
 22
 23 objeq.. obj=e=sum((a,b,c,d,e),z(a,b,c,d,e)*x(e,d,c,b,a)*var(e,b,a));
 24 r(b,c,d).. sum((a,e),Var(e,b,a))=l=sum((a,e),x(e,d,c,b,a)*z(a,b,c,d,e));
 25 q(a,b,c).. sum((d,e),var(e,b,a)/x(e,d,c,b,a)*z(a,b,c,d,e))=l=20;
 26 model slow /all/
 27 option lp=bdmlp;
 28 slow.workspace=13;
 29 solve slow maximizing obj using lp;
 30 parameter sumofvar;
 31 sumofvar=sum((a,b,c,d,e),z(a,b,c,d,e)*x(e,d,c,b,a)*var.l(e,b,a));

Panel B. Program after set index reordering

 6 Set a /1*10/
 7 B /1*10/
 8 C /1*10/
 9 D /1*10/
 10 e /1*10/
 11 parameter x(a,b,c,d,e);
 12 X(a,b,c,d,e)=10;
 13 parameter z(a,b,c,d,e);
 14 z(a,b,c,d,e)=x(a,b,c,d,e);
 15 parameter y;
 16 Y=sum ((a,b,c,d,e),z(a,b,c,d,e)*x(a,b,c,d,e));
 17 variables obj
 18 Positive variables var(a,b,e);
 19 equations objeq
 20 R(b,c,d)
 21 q(a,b,c);
 22
 23 objeq.. obj=e=sum((a,b,c,d,e),z(a,b,c,d,e)*x(a,b,c,d,e)*var(a,b,e));
 24 r(b,c,d).. sum((a,e),Var(a,b,e))=l=sum((a,e),x(a,b,c,d,e)*z(a,b,c,d,e));
 25 q(a,b,c).. sum((d,e),var(a,b,e)/x(a,b,c,d,e)*z(a,b,c,d,e))=l=20;
 26 model slow /all/
 27 option lp=bdmlp;
 28 slow.workspace=13;
 29 solve slow maximizing obj using lp;
 30 parameter sumofvar;
 31 sumofvar=sum((a,b,c,d,e),z(a,b,c,d,e)*x(a,b,c,d,e)*var.l(a,b,e));

12-27

Table 12.2 A looping Example

 4 option profile=1;
 6 Set a /1*10/
 7 B /1*10/
 8 C /1*10/
 9 D /1*10/
 10 e /1*10/
 11 parameter x(a,b,c,d,e);
 12 parameter z(a,b,c,d,e);
 13 parameter y;
 14 variables obj
 15 Positive variables var(a,b,e);
 16 equations objeq
 17 R(b,c,d)
 18 q(a,b,c);
 20 objeq.. obj=e=sum((a,b,c,d,e),z(a,b,c,d,e)*x(a,b,c,d,e)*var(a,b,e));
 21 r(b,c,d).. sum((a,e),Var(a,b,e))=l=sum((a,e),x(a,b,c,d,e)*z(a,b,c,d,e));
 22 q(a,b,c).. sum((d,e),var(a,b,e)/x(a,b,c,d,e)*z(a,b,c,d,e))=l=20;
 23 model slow /all/
 24 option lp=bdmlp;
 25 slow.workspace=13;
 26 set loops /1*2/
 27 parameter sumofvar;
 28 loop(loops,
 29 X(a,b,c,d,e)=10;
 30 z(a,b,c,d,e)=x(a,b,c,d,e);
 31 Y=sum ((a,b,c,d,e),z(a,b,c,d,e)*x(a,b,c,d,e));
 32 solve slow maximizing obj using lp;
 33 sumofvar=sum((a,b,c,d,e),z(a,b,c,d,e)*x(a,b,c,d,e)*var.l(a,b,e));
 34);

12-28

Table 12.3 PROFILE information for example in Table 12.1

---- 2 OTHER 0.000 0.060 SECONDS
---- 3 OTHER 0.000 0.060 SECONDS
---- 4 OTHER 0.000 0.060 SECONDS
---- 12 ASSIGNMENT X 1.530 1.590 SECONDS 100000
---- 14 ASSIGNMENT Z 4.070 5.660 SECONDS 100000
---- 16 ASSIGNMENT Y 2.910 8.570 SECONDS
---- 28 ASSIGNMENT SLOW 0.000 8.570 SECONDS
---- 29 SOLVE INIT SLOW 0.000 8.570 SECONDS
---- 23 EQUATION OBJEQ 7.470 16.040 SECONDS 1
---- 24 EQUATION R 13.130 29.170 SECONDS 1000
---- 25 EQUATION Q 9.220 38.390 SECONDS 1000
---- 29 SOLVE FINI SLOW 1.320 39.710 SECONDS
---- 29 GAMS FINI 2.200 42.020 SECONDS
---- 1 EXEC-INIT 0.000 0.000 SECONDS
---- 29 SOLVE READ SLOW 0.380 0.380 SECONDS
---- 31 ASSIGNMENT SUMOFVAR 4.120 4.500 SECONDS
---- 31 GAMS FINI 0.000 4.500 SECONDS

12-29

Table 12.4 Profile information for looping example when profile=1

---- 2 OTHER 0.000 0.050 SECONDS
---- 24 OTHER 0.000 0.050 SECONDS
---- 25 ASSIGNMENT SLOW 0.000 0.050 SECONDS
loop 1
---- 32 SOLVE INIT SLOW 0.000 6.970 SECONDS
---- 20 EQUATION OBJEQ 6.160 13.130 SECONDS 1
---- 21 EQUATION R 9.060 22.190 SECONDS 1000
---- 22 EQUATION Q 6.480 28.670 SECONDS 1000
---- 32 SOLVE FINI SLOW 0.880 29.550 SECONDS
---- 1 EXEC-INIT 0.000 0.000 SECONDS
solve report
---- 32 SOLVE READ SLOW 0.390 0.390 SECONDS
loop 2
---- 32 SOLVE INIT SLOW 0.000 5.990 SECONDS
---- 20 EQUATION OBJEQ 7.140 13.130 SECONDS 1
---- 21 EQUATION R 12.800 25.930 SECONDS 1000
---- 22 EQUATION Q 7.800 33.730 SECONDS 1000
---- 32 SOLVE FINI SLOW 1.040 34.770 SECONDS
---- 32 GAMS FINI 2.410 37.240 SECONDS
solve report
---- 32 SOLVE READ SLOW 0.270 0.270 SECONDS

12-30

Table 12.5 Profile information for looping example when profile=1 and profiletol=1

loop 1
---- 29 ASSIGNMENT X 1.810 2.090 SECONDS 100000
---- 30 ASSIGNMENT Z 4.180 6.270 SECONDS 100000
---- 31 ASSIGNMENT Y 1.640 7.910 SECONDS
---- 32 SOLVE INIT SLOW 0.000 7.910 SECONDS
---- 20 EQUATION OBJEQ 6.270 14.180 SECONDS 1
 6.210 ROWGEN
 0.060 COLGEN
---- 21 EQUATION R 10.540 24.720 SECONDS 1000
 9.550 ROWGEN
 0.990 COLGEN
---- 22 EQUATION Q 6.590 31.310 SECONDS 1000
 6.540 ROWGEN
 0.050 COLGEN
---- 32 SOLVE FINI SLOW 0.830 32.140 SECONDS
 0.060 ROWS
 0.710 COLUMNS
 0.060 OTHERS
solve report
---- 32 GAMS FINI 2.030 34.170 SECONDS

---- 1 EXEC-INIT 0.000 0.000 SECONDS
---- 32 SOLVE READ SLOW 0.330 0.330 SECONDS
---- 33 ASSIGNMENT SUMOFVAR 2.140 2.470 SECONDS
loop 2
---- 30 ASSIGNMENT Z 1.260 4.280 SECONDS 100000
---- 31 ASSIGNMENT Y 1.650 5.930 SECONDS
---- 32 SOLVE INIT SLOW 0.000 5.930 SECONDS
---- 20 EQUATION OBJEQ 7.250 13.180 SECONDS 1
 7.250 ROWGEN
 0.000 COLGEN
---- 21 EQUATION R 11.640 24.820 SECONDS 1000
 10.430 ROWGEN
 1.210 COLGEN
---- 22 EQUATION Q 8.680 33.500 SECONDS 1000
 8.630 ROWGEN
 0.050 COLGEN
---- 32 SOLVE FINI SLOW 1.370 34.870 SECONDS
 0.000 ROWS
 0.770 COLUMNS
 0.160 OTHERS
---- 32 GAMS FINI 2.480 37.350 SECONDS
---- 1 EXEC-INIT 0.000 0.000 SECONDS
solve report
---- 32 SOLVE READ SLOW 0.330 0.330 SECONDS
---- 33 ASSIGNMENT SUMOFVAR 2.200 2.530 SECONDS

13-1

Chapter 13. Verifying Data

Often after analyzing a model via the methods in Chapters 8 and 9 or other means,

modelers suspect that there is something wrong with the data, the calculation process or the

equation specification. Modelers may also release a model to a set of nontechnical users and may

wish to have automatic procedures for verifying data. This chapter deals with ways to employ

GAMS in an investigation of the model data. Here we cover:

a) common causes of bad data

b) investigating for the causes of bad data in the model equations

We will discuss each of these items below:

13.1 What is Wrong with the Data -- Some things to Check

GAMS capability to easily handle algebraic symbols over a wide variety of data is a double

edged sword. While one can easily manipulate large blocks of data one also loses intimate

knowledge of what goes on in many sub cases. There are some common places to look for errors

that we discuss below.

13.1.1 Check for Completeness and Consistency of Input Data

One of the most common statements in computing is garbage-in garbage-out. Namely, if

bad data are entered then it usually causes problems in computer programs and often the data are

the limiting factor. One should go back and make sure that the input data set is complete and

inconsistent and that the numbers in it match up with expectations. In section 13.2 we go through

some procedures for checking out data completeness and consistency.

13.1.2 Check for the non dynamic calculation

A common mistake made during the execution of the GAMS program involves dynamic

13-2

versus non-dynamic calculations. In GAMS a dynamic calculation is performed every time a

model is generated whereas a non-dynamic calculation is only performed once at the point it

appears in the program execution. GAMS model definition statements, i.e., that in line #43 in the

example below,

41 cost(i,j)=10+2*distance(i,j);
42 distance(i,j)=distance(i,j)/2;
43 obj.. Costtran=e=sum((i,j),cost(i,j)*shipment(i,j));

are dynamic in that they’re done every time a SOLVE statement is executed. On the other hand,

lines 41 - 42 are non-dynamic and the calculations therein only done once at the time that the

statements are executed. The value of cost used in generating the line 43 equation in any

subsequent SOLVE is the value dependent on distance as it existed before line 41 not as altered in

line 42. In general, there are two ways to fix this

g) The modeler needs to make sure that any calculations used in the model equations

are brought up to date when their input data have been revised. In the example, we

could move or repeat line 41 after line 42.

h) The modeler can rewrite the model specification equations so that the calculations

are embedded. Thus, we could revise line 43 as below to incorporate the cost

dependence on the distance parameter into the equation making the calculation

dynamic and automatically revised whenever a solve statement is executed.

43 obj.. Costtran=e=sum((i,j),(10+2*distance(i,j))*shipment(i,j));

13.1.3 Check for Inadvertent Multiplicative Sums

One phenomena we run into more often than we would like to admit is the multiplicative

sum. In particular, we find instances where sums add terms whose definition does not include the

13-3

index summed over. For example, if the set N contains ten elements and one uses an equation of

the form

res(j).. sum(N, a(j)*x(j)) =e= b(j);

or

 Z= sum((j,N), a(j)*x(j))

then in either case all the a(j) coefficients would be multiplied by ten because they are repeatedly

added for each element in the set N, and N is not an argument of either a(j) or x(j). Thus, if

numerical investigations show the coefficients are higher by some multiple make sure the set

indices being summed over are all part of the definitions of the mathematical sums therein. In both

cases above the N sum is probably unnecessary and a specification error.

13.1.4 Included Irrelevant Terms

Often a modelers perception of relevant items in a model and GAMS perception are at

odds. GAMS automatically considers every possible dimension for every item even though the

modeler may not. For example (see file tranzero.gms), suppose one is setting up a transportation

problem and in the data set transport costs are omitted for routes which cannot be used (i.e. one

might exclude data on a place without a harbor between two places that must involve movement

by ship). Suppose the model specification equations are:

46 TCOSTEQ.. TCOST =E= SUM((PLANT,MARKET), SHIPMENTS(PLANT,MARKET)*
 47 COST(PLANT,MARKET));
 48 SUPPLYEQ(PLANT).. SUM(MARKET, SHIPMENTS(PLANT, MARKET))
 49 =L= (SUPPLY(PLANT);
 50 DEMANDEQ(MARKET).. SUM(PLANT, SHIPMENTS(PLANT, MARKET))
 51 =G= (DEMAND(MARKET);

But this formulation would define shipment possibilities from every source to every destination.

This will include variables representing the omitted routes which have zero transport costs and a

solution will likely involve movements across omitted routes. What one needs to do is either

13-4

a) constrain all variables which do not have transportation costs to be zero using a

command like

shipments.fx(plant,market)$(cost(plant,market) eq 0)=0;

b) modify the model specification to conditionally omit the irrelevant variables using $

commands as follows.

 52 SUPPLYEQ2(PLANT).. SUM(MARKET$cost(plant,market)
 53 ,SHIPMENTS(PLANT, MARKET))=L= SUPPLY(PLANT);
 54 DEMANDEQ2(MARKET).. SUM(PLANT$cost(plant,market),
 55 SHIPMENTS(PLANT,MARKET)) =G= DEMAND(MARKET);

 which only allows the shipment variable into the model when cost has been

defined. Note a condition is not needed in the objective function since the

multiplication by a zero cost does not yield a coefficient (also GAMS will only

consider nonzero entries so will skip over that case)

13.1.5 Check for Partially eliminated variables

The above case raises yet another problem which often plagues modelers. One must be

careful to include the same conditionals for variable existence everywhere. Suppose we had the

transport model from the last section plus one additional constraint (tranpart.gms) which omits the

conditional on the shipments variable as follows:

41 TCOSTEQ.. TCOST =E= SUM((PLANT,MARKET), SHIPMENTS(PLANT,MARKET)*
 42 COST(PLANT,MARKET));
 43 SUPPLYEQ(PLANT).. SUM(MARKET$cost(plant,market)
 44 ,SHIPMENTS(PLANT, MARKET))=L= SUPPLY(PLANT);
 45 DEMANDEQ(MARKET).. SUM(PLANT$cost(plant,market),
 46 SHIPMENTS(PLANT,MARKET)) =G= DEMAND(MARKET);
 47 minships(plant).. sum(market,shipments(plant,market))
 48 =g= minship(plant);

The new constraint imposes a minimum level of outgoing shipments. Solution of the resultant

model involves nonzero quantities of the shipment variable for the omitted routes since the

conditional in the last constraint does not omit them. Note these variables would only exist in the

13-5

last constraint.

Modelers should insure that when a $ condition is included for a variable, that the same $

condition appears in association with all appearances of the variable. Otherwise, cases can arise

where the variable appears in the model even though the user feels it should be eliminated. This

can also be rectified by fixing the variable at zero as discussed in the previous section.

One other consideration involves the use of complex $ conditions. In one of the models

that we work with there is a nine dimensional variable which represents harvest time for trees.

Conditions on existence of this variable depend on a number of data items including nonzero wood

yields, available acreage, harvest costs etc. This makes for a complex $ condition which needs to

be repeatedly included. Given the possibility for error in including and revising that condition, we

chose to enter a calculated set called ISEXIST with the same dimensions as the variable and define

set elements only for the relevant cases. In turn the model was setup to generate the variable

conditional only on that parameter. Suppose we illustrate this in the transport case (tranexst.gms)

where we wish the variable to exist only for:

1) cases where there are nonzero distance when the source and destination differ

2) cases where there are zero distances where the source and destination are the same

place

3) cases where the distance is less than 5000 miles.

Suppose we then compute a set (yestran) which tells when a route exists and condition our model

on it.

 31 yestran(plant,market)$((cost(plant,market) gt 0
 32 and distance(plant,market) lt 5000)
 33 or (sameas(plant,market)))=yes;
 43 TCOSTEQ.. TCOST =E= SUM(yestran(plant,market),
 44 SHIPMENTS(PLANT,MARKET)*COST(PLANT,MARKET));
 45 SUPPLYEQ(PLANT).. SUM(yestran(plant,market)

13-6

 46 ,SHIPMENTS(PLANT, MARKET))=L= SUPPLY(PLANT);
 47 DEMANDEQ(MARKET).. SUM(yestran(plant,market),
 48 SHIPMENTS(PLANT,MARKET)) =G= DEMAND(MARKET);

Note in this case we are not using conditionals but are rather using the set as an index to sum over.

We could have expressed the TCOSTEQ sum as

SUM((plant,market)$yestran(plant,market)

 The approaches are equivalent.

13.1.6 Calculation Specification Mistakes

Naturally the GAMS code can be incorrect coded with mathematical mistakes in laying out

calculations or equations. For example calculations might have conditionals messed up,

parentheses entered in the wrong places, terms exponentiated rather than multiplied, added rather

than multiplied, divided rather than added, etc. The next section provides procedures for

discovering problems of this nature.

13.2 Procedures to discover Problems

Unfortunately, when one has found some improper calculation results in a program

numbers one cannot always easily recognize the underlying problem. In the section below we

outline a number of numerical ways of finding problems.

13.2.1 Basic approach

The basic approach to finding a problem in GAMS is a mixture of isolating faulty code

sections and displaying inputs and outputs. Suppose one had an equation which computed

transport cost as a parameter laden function of distance. What we would do is print out the names

of the sources, names of the destinations, the distances, and the cost function parameters, as well

as the calculated costs. Then for cases of interest results we might

13-7

1) hand verify the calculation

2) check the input data making sure that source and destination are proper, that there

is a well defined distance, and that the parameters the cost function are appropriate.

This is done using a GAMS displays for the input items along with a mixture of display statements

or the procedures in chapter 8 for model equations, i.e., GAMSCHK and/or LIMROW/LIMCOL .

Our methodology for finding the cause of model data problems reverts back to the small to

large arguments in chapter five.

13.2.1.1 Small to Large Strategies to Check Out Subcases

The easiest way to check data is to examine a small set as it passes through the program

manipulations making sure all is proceeding according to expectations. One can do this by a)

specifying a small version of the large data set as in chapter 5, b) by using subsets, or c) by

temporarily zeroing out most of the data in the original array. Let us illustrate the later two cases.

The example in Table 13.1(transml.gms) illustrates this. In that transportation model we

specify a 100x100 problem and compute distances using a peculiar function. Later we might find

this function causes problems and set out to discover the difficulty. Initially we would define a

smaller problem or as the example shows use subsets. Note in lines 6-9 we define smaller sets.

Then in lines 11-13 we compute cost only for the restricted set. On the other hand it may be more

convenient to temporarily reduce the amount of data being used by zeroing a lot of it out as in lines

16-18 (lines we would remove after debugging). Notice under either case the effective distance

matrix is a three by three, even though it started out as a hundred by a hundred.

13-8

One also could have simply modified the calculations in the program so that rather than

using the set “origin” they used the set “smallorig” and “smalldest” instead of “destinat”

(transet.gms). This is often convenient as one can alter the definitions of the restricted set to the

full set using commands like

smalldest(destinat)=yes;

smallorig(origin)=yes;

to restore the data set to full size after debugging.

In any case we are now ready to look for the problem.

13.2.1.2 Example of Checking Out a Calculation

Given a set of problem data, hopefully a small one and the indication of a symptom that

there is something wrong with a calculation one proceeds to display the input and output. In the

example, suppose we had investigated the solution and found the objective function contained

negative costs of shipment. We then would investigate the calculation of cost in lines 19 and 22

where we print out the input data and output. These items are reproduced below.

---- 19 PARAMETER DISTANCE
 d3 d44 d99
o4 230.000 2280.000 5030.000
o47 -200.000 1850.000 4600.000
o91 -640.000 1410.000 4160.000

---- 22 PARAMETER COST
 d3 d44 d99
o4 463.000 4563.000 10063.000
o47 -397.000 3703.000 9203.000
o91 -1277.000 2823.000 8323.000

An investigation of that output would quickly reveal the negative distances as the problem and lead

one to investigate the calculation thereof and find the flaws in the calculation in lines 4-5.

---- 19 PARAMETER DISTANCE

 d3 d44 d99
o4 230.000 2280.000 5030.000
o47 -200.000 1850.000 4600.000

13-9

o91 -640.000 1410.000 4160.000

---- 22 PARAMETER COST

 d3 d44 d99
o4 463.000 4563.000 10063.000
o47 -397.000 3703.000 9203.000
o91 -1277.000 2823.000 8323.000

13.2.2 Check out data via calculation

One need not just display tables and hunt for problems visually. GAMS can be used to do

calculations which verify the accuracy of the data. For example, consider the statements in lines

23-27 of Table 13.1. Here we define an array and compute its entries so that it contains faulty

distances as identified by screening criteria that fill the array with the distance number whenever

that distance is negative or in excess of 4,000 miles.

One can pursue similar automated data checks to reveal bad interrelationships between data

items, or missing data. For example in the above model, (the remaining examples in this section

are all in the file trandem.gms) if we also had a parameter with demand by destination the

statements below would tell us where we had a demand location which had no incoming

transportation links (where we define a link only if there is nonzero distance).

29 set isolated(destinat) isolated demand locations;
 30 isolated(destinat)$(demand(destinat) gt 0 and
 31 sum(origin,abs(distance(origin,destinat))) le 0)
 32 =yes;

33 display isolated;

We also can use calculations to look for missing or extraneous data. The statements below

indicate where we have destinations we can ship to which do not exhibit nonzero demand

13-10

indicating either excess data in the transport matrix or missing demand data.

33 set nodemand(destinat) destinations without demand;
 34 nodemand(destinat)$(demand(destinat) eq 0 and
 35 sum(origin,abs(distance(origin,destinat))) gt 0)
 36 =yes;

37 display nodemand;

We now arrive at the general point of this section. One can enter calculations based on a

screening rule to automatically verify either large or small data sets and display the results in a

diagnostic format. One can also limit the output of such checks by using code such as the

following:

 37 if (sum(nodemand(destinat),1),display nodemand);
 38 if (sum(isolated(destinat),1),display isolated);

which will only print out the data problems when they are present.

13.2.3 Code simplification to find problems

If the results from a calculation are turning out unexpectedly, one can eliminate large parts

of the equation and just examine sub components. For example if one takes a transportation model

which contains conditionals to eliminate unneeded variables and removes the Cost(i,j) term and just

leaves the shipment variable then one can examine which variables pass that conditional statement

by looking at the LIMROW, LIMCOL GAMSCHK output on the particular equations.

Also in more complex calculations it is often desirable to eliminate terms so as to isolate

the problem. Table 13.2 contains a thirty-four line calculation drawn from the ASM report writer

as in chapter five. If this calculation was malfunctioning one might want to focus on particular

subsets of the terms. For example the sum starting in line 2 goes on through line 33 but one might

wish to only consider say the first part of it which is line 3 though 16. This could be accomplished

13-11

by doing one of several things. First, one could go in line 17, 24, 29, and 34 and multiply each of

these terms by a zero which would eliminate those terms from consideration. Second, one could

put an $ONTEXT before line 17 and an $OFFTEXT after line 34 (although one would have to

make sure the ending parentheses in line 33 was kept active). Third, one could put asterisks in

front of line 17 through 33 reducing them to comments (again having to preserve the closing

parentheses). One also can use strategies investigating which terms pass the conditionals by for

example surrounding lines 4-5 with a 1$(..) then multiplying line 7 and 11 by zero which would

yield a sum which is the count of how many crop , tech and wtech alternatives passed the

conditional and make sure that some cases passed.

Another strategy one can use when examining a complex calculation is to move some of

the sums into arrays. Thus rather summing in lines 3 through 16 over crop, wtech and tech one

could just define an array which had those three dimensions and add in the term in the sum then

display the results. In turn this would allow one to examine each case.

In closing complex terms may be better examined by:

1) simplifying elements using text, surrounding by 1$(..) or by using zero times.

2) when conditionals are present use something that only puts a simple value like a one

to see how often the conditionals are met.

3) compute intermediate terms into parameters so you can examine them to see what

the problems are.

13.2.4 Focusing in on Problematic Areas

Sometimes GAMS programs get quite slow and can take a long time to run. There are

several ways to focus and check on only particular code segments. In particular, let’s suppose that

13-12

we have a relatively large model and we are questioning a particular calculation that occurs a

substantial time after the program has begun. Two strategies are possible here,

1) One could take the GAMS model, put displays before and after the calculation and

let the model reexecute and proceed, or

2) One can take the existing model up to right before the calculation (or at some later

more desirable stage) and save the execution status using the GAMS save/restart

features, then just execute the calculation all by itself again with displays of inputs

and outputs.

The second approach is the one we commonly use although one has to be careful to make

sure that the input data of the calculation have not changed between the point at which the

calculation was originally made in the program and the end of the program where the reap harvest

are. Thus, for example we could take and save the program that we have in Table 13.1 and then

just recalculate whatever individual parameters that we wanted assuming the data hasn’t changed

and if we wanted to solve the model execute a solve statement. This would result for example in a

perhaps a two statement file that GAMS was restarted with. The first one of which provided a

revised cost calculation the second one of which was the solve statement. One can also then

isolate the calculation of interest trying out different alternatives without needing to execute the

whole rest of the GAMS program.

13.3 Tracing How Model Data are used -- Cross Reference Lists

When one finds bad data in a GAMS model one needs to be careful to see that all

manipulations done on that data are appropriate. One may, for example, have a module of the

code which one is forgotten about which did the small to large simplification and eliminated a lot

13-13

of the data and that may inadvertently be included. It is then important when one finds bad data to

refer to some form of cross-reference map or use text editing to do a global search on a variable

and trace through how that variable is manipulated during the course of the program. This can be

difficult to do in cases because the module may include files and save/restart can make one

overlook items. Two approaches are recommended for looking at this. One of which is using the

cross-reference map the other of which involves using a systematic cross-reference map that was

designed for multi-part program. Each is defined below.

13.3.1 Cross Reference Map

A fundamental tool in diagnosing models is the cross reference list. One can use the

command $OFFSYMLIST OFFSYMXREF to suppress a cross reference list or $ONSYMLIST

ONSYMXREF to turn it on. (If you do not use either of the commands, the default will suppress

a cross reference list automatically.) The cross reference list, an example of which is given in

GAMSMENU. This cross reference list only covers the current module and does not expand

across different components when restart files are used. Nevertheless, it matches up with the list

file and allows one to examine the definition and use of all GAMS model symbols in the current

model. One can also use the undocumented RF option on the job control file to save a cross

reference across modules in a file.

13.3.2 GAMSMAP

The cross-reference map is not very helpful when one is dealing with large multi-part

models such as the ASM model as discussed in Chapter five. As a consequence we have

developed a program called GAMSMAP, shows the modules where items appear. Instructions for

GAMSMAP appear in Appendix III of this manual. The ASM output of GAMSMAP (Table 13-3

13-14

Panel A-D) shows each module in which data are manipulated and then shows where the data are

used in terms of calculations and model generation. As a consequence when one finds bad data

one can go back and trace through the modules in which that data are calculated and make sure no

inadvertent things are being done in portions of the code one isn’t directly looking at because of

included statements.

13-14

Table 13.1 Example model for Small to Large Reduction

 1 set origin /o1*o100/
 2 destinat /d1*d100/;
 3 parameter distance(origin,destinat);
 4 distance(origin,destinat)
 5 =120+50*ord(destinat)-10*ord(origin);
 6 set smallorig(origin) small set of origins for testing
 7 /o4,o47,o91/
 8 smalldest(destinat) small set of destinations
 9 /d3,d44,d99/;
 10 parameter cost(origin,destinat);
 11 Cost(origin,destinat)
 12 $(smallorig(origin) and smalldest(destinat))
 13 =3+2*distance(origin,destinat);
 14 display cost;
 15 * Temporarily remove data from distance
 16 distance(origin,destinat)
 17 $((not smallorig(origin))
 18 or (not smalldest(destinat)))=0;
 19 display distance;
 20 Cost(origin,destinat)$distance(origin,destinat)
 21 =3+2*distance(origin,destinat);
 22 Display cost;
 23 parameter baddist(origin,destinat) bad distances where below zero and above 4000;
 24 Baddist(origin,destinat)$(distance(origin,destinat) lt 0 or
 25 distance(origin,destinat) gt 4000)
 26 =distance(origin,destinat);
 27 display baddist;

13-15

Table 13.2 Complex Calculation

1 BALANCEP(PRIMARY,"PRODUCTION") =
 2 SUM(SUBREG,
 3 SUM((CROP,WTECH,TECH)$FARMPROD("SLIPPAGE",CROP),
 4 CROPBUDGET.L(SUBREG,CROP,WTECH,"NONPART",TECH) *SCALPROD
 5 *CBUDDATA(PRIMARY,SUBREG,CROP,WTECH,"NONPART",TECH)$
 6 (CBUDDATA(PRIMARY,SUBREG,CROP,WTECH,"NONPART",TECH) GT 0)
 7 + CROPBUDGET.L(SUBREG,CROP,WTECH,"PARTICIP",TECH) *SCALPROD
 8 *CBUDDATA(PRIMARY,SUBREG,CROP,WTECH,"NONPART",TECH)
 9 *(1.0-FPPART(SUBREG,CROP))$
 10 (CBUDDATA(PRIMARY,SUBREG,CROP,WTECH,"NONPART",TECH) GT 0)
 11 + CROPBUDGET.L(SUBREG,CROP,WTECH,"PARTICIP",TECH)
 12 *SCALPROD
 13 *CBUDDATA(PRIMARY,SUBREG,CROP,WTECH,"PARTICIP",TECH)
 14 *FPPART(SUBREG,CROP)
 15 * (1-FARMPROD("PERCNTPAID",CROP))$
 16 (CBUDDATA(PRIMARY,SUBREG,CROP,WTECH,"PARTICIP",TECH) GT 0))
 17 + SUM((CROP,WTECH,TECH)$(FARMPROD("SLIPPAGE",CROP) GT 0.0 AND
 18 FARMPROD("FPYIELD",CROP) LE 1.0),
 19 CROPBUDGET.L(SUBREG,CROP,WTECH,"PARTICIP",TECH)
 20 *SCALPROD *FPPART(SUBREG,CROP)*FARMPROD("PERCNTPAID",CROP)
 21 *CBUDDATA(PRIMARY,SUBREG,CROP,WTECH,"PARTICIP",TECH)
 22 *(1.0-FARMPROD("FPYIELD",CROP))$
 23 (CBUDDATA(PRIMARY,SUBREG,CROP,WTECH,"PARTICIP",TECH) GT 0))
 24 + SUM((CROP,WTECH,TECH)$(FARMPROD("SLIPPAGE",CROP) LE 0.),
 25 CROPBUDGET.L(SUBREG,CROP,WTECH,"BASE",TECH)
 26 *SCALPROD
 27 *CBUDDATA(PRIMARY,SUBREG,CROP,WTECH,"BASE",TECH)$
 28 (CBUDDATA(PRIMARY,SUBREG,CROP,WTECH,"BASE",TECH) GT 0))
 29 + SUM((ANIMAL,LIVETECH),
 30 LVSTBUDGET.L(SUBREG,ANIMAL,LIVETECH)
 31 *SCALLIVE
 32 *LBUDDATA(PRIMARY,SUBREG,ANIMAL,LIVETECH)$
 33 (LBUDDATA(PRIMARY,SUBREG,ANIMAL,LIVETECH) GT 0)))
 34 +DEFPRODN.L(PRIMARY)$FARMPROD("SLIPPAGE",PRIMARY)*SCALE(PRIMARY);

Table 13.3 Sample Abstract Output from GAMSMAP
Panel A Part of File gamsout

----List of Parameters which are Computed
Parameter File where values are computed
 CBUDDATA ALLOFIT.GMS

13-16

 PDEMAND ASMCALRN.93
 PEXPORT ASMCALRN.93
 SDEMAND ASMCALRN.93
 SEXPORT ASMCALRN.93
 CCCBUDDATA ASMCALSU.93
 FARMPROD ASMCALSU.93
 LBUDDATA ASMCALSU.93
 LIM ASMMODEL.GMS
 AUMSSUM ASMREPT.GMS
 BALANCEP ASMREPT.GMS
 BALANCES ASMREPT.GMS
 CROPSUBREG ASMREPT.GMS
 CROPSURP ASMREPT.GMS
 LANDSUM ASMREPT.GMS
 LIVESUBREG ASMREPT.GMS
 NATINPUSE ASMREPT.GMS
 PCONSUR ASMREPT.GMS
 WELSUM ASMREPT.GMS
 CONVERGE ASMSOLVF.GMS
 FARMPROD ASMSOLVF.GMS
 RESULT ASMSOLVF.GMS
 TOL ASMSOLVF.GMS
 TOLER ASMSOLVF.GMS
 CRPLANDDIF CRP.SML
 LANDAVAIL CRP.SML
 SLANDAVAIL CRP.SML
 REGMIXDATA NATMIX.SML
 SCALE SETS.SML

Panel B Part of file gamsmap.sc0

List of items which appear ill defined

FPSCENARIO **** no use
 ref in FPDATA.SML
FPTECH **** no use
 ref in SETS.SML
LANDTWO **** no use
 ref in SETS.SML
NFPTECH **** no use
 ref in SETS.SML

List of all files used in the program

 ALLOFIT.GMS
 ASMCALRN.93
 ASMCALSU.93
 ASMMODEL.GMS
 ASMREPT.GMS
 ASMSEPER

13-17

 ASMSOLVF.GMS
 CROP.SML
 CRP.SML
 DEMAND.SML
 EROSION.SML
 FPDATA.SML
 LIVE.SML
 MIX.SML
 NATMIX.SML
 PROC.SML
 REPTSETS.93
 SETS.SML

Panel C Part of file gamsmap.sc1

--

 Files where actions on SETS appear
 ITEM NAME DECLARED DEFINED ASSIGNED CONTROL REF
--
 ALLCOM REPTSETS.93 REPTSETS.93 ASMREPT.GMS ASMREPT.GMS
 ALLI SETS.SML SETS.SML SETS.SML SETS.SML
 REPTSETS.93 REPTSETS.93
 FPDATA.SML FPDATA.SML
 ASMCALSU.93 PROC.SML
 ALLOFIT.GMS CROP.SML
 ASMREPT.GMS LIVE.SML
 ASMCALSU.93
 ALLOFIT.GMS
 ASMMODEL.GMS
 ASMREPT.GMS
 ALLSUBREG SETS.SML SETS.SML SETS.SML
 CRP.SML

--
Files where actions on PARAMETERS appear
 ITEM NAME DECLARED DEFINED ASSIGNED REF
--
 AUMSSUBREG REPTSETS.93 **** no use
 AUMSSUM REPTSETS.93 ASMREPT.GMS ASMREPT.GMS
 AUMSSUP DEMAND.SML DEMAND.SML ASMCALSU.93
 ASMMODEL.GMS
 ASMCALRN.93
 ASMREPT.GMS
 BALANCEP REPTSETS.93 ASMREPT.GMS ASMREPT.GMS
 BALANCES REPTSETS.93 ASMREPT.GMS ASMREPT.GMS
--
Files where actions on EQUATIONS appear
 ITEM NAME DECLARED DEFINED ASSIGNED REF
--
 ARTIFICIAL ASMMODEL.GMS ASMMODEL.GMS ASMMODEL.GMS
 ASMREPT.GMS
 AUMSCONVEX ASMMODEL.GMS ASMMODEL.GMS ASMMODEL.GMS
 AUMSIDENT ASMMODEL.GMS ASMMODEL.GMS ASMMODEL.GMS
 AUMSR ASMMODEL.GMS ASMMODEL.GMS ASMMODEL.GMS
 ASMREPT.GMS

13-18

--
 Files where actions on VARIABLES appear
 ITEM NAME DECLARED DEFINED ASSIGNED REF
--
 ARTIF ASMMODEL.GMS ASMMODEL.GMS
 ASMREPT.GMS
 ARTS ASMMODEL.GMS ASMMODEL.GMS
 ASMREPT.GMS
 AUMSPRIV ASMMODEL.GMS ASMMODEL.GMS ASMMODEL.GMS
 ASMCALRN.93 ASMREPT.GMS

 SECTOR ASMMODEL.GMS ASMMODEL.GMS ASMSOLVF.GMS ASMSOLVF.GMS
--
Items worked on in file ASMCALRN.93
 SETS
 Item Name DEFINED DECLARED ASSIGNED IMPL-ASN CONTROL REF
 ANIMAL X X
 CROP X X
 CRPMIXALT X X
 CTECH X X
 LANDTYPE X X
 LIVETECH X X

 PARAMETERS
 Item Name DEFINED DECLARED ASSIGNED IMPL-ASN CONTROL REF
 AUMSSUP X
 CBUDDATA X
 LABORSUP X
 LANDSUPPL X
 LBUDDATA X
 MIXDATA X
 NATMIXDATA X
 PDEMAND X X
 PEXPORT X X
 PIMPORT X

 VARIABLES
 Item Name DEFINED DECLARED ASSIGNED IMPL-ASN CONTROL REF
 AUMSPRIV X
 CROPBUDGET X
 DEMANDP X
 DEMANDS X
 EXPORTP X
 EXPORTS X
 HIRED X
 IMPORTP X
 IMPORTS X

--

Panel D Output of file gamsmap.sc2

##----List of Parameters given input values
Parameter File where values are entered

13-17

 QINC ASMSEPER
 SEPAG ASMSEPER
 CCCBUDDATA CROP.SML
 CRPMOVE CRP.SML
 CRPSTUFF CRP.SML
 YESCONV CRP.SML
 AUMSSUP DEMAND.SML
 INPUTPRICE DEMAND.SML
 LABORSUP DEMAND.SML
 LANDAVAIL DEMAND.SML
 LANDSUPPL DEMAND.SML
 PDEMAND DEMAND.SML
 PEXPORT DEMAND.SML
 PIMPORT DEMAND.SML
 POPULATION DEMAND.SML
 SDEMAND DEMAND.SML
 SEXPORT DEMAND.SML
 SIMPORT DEMAND.SML
 WATERSUP DEMAND.SML
 EROSION EROSION.SML
 FARMPROD FPDATA.SML
 FPPART FPDATA.SML
 LBUDDATA LIVE.SML
 MIXDATA MIX.SML
 NATMIXDATA NATMIX.SML
 PROCBUD PROC.SML
 BASEOUTPUT SETS.SML
 CONVERGE SETS.SML
 SCALLIVE SETS.SML
 SCALMIX SETS.SML
 SCALOBJ SETS.SML
 SCALPROC SETS.SML
 SCALPROD SETS.SML
 TOL SETS.SML

14-1

Chapter 14 Improving GAMS Output

Many users generate their GAMS output solely through use of the display statement,

others use put capabilities, yet others generate output into spreadsheets, do graphing and or

provide output that can be accessed through the web. In this chapter we review topics regarding

output via GAMS. In a later chapter (17) we present information on interfacing GAMS with other

packages. First, we discuss report writing. Then, we address how one might make the displays

more effective changing their ordering and reformatting displays. We then go on and provide

material on put files both as an alternative to displays and as a way of accessing information from

other programs.

14.1 Report Writing

Users of GAMS may be frustrated by their perceived need to take the LST file solution report and

do a number of hand calculations on it. However, this is totally unnecessary. GAMS provides

procedures whereby one can use information generated in the solution part of the calculations.

Consider the following lines that are from ASMREPT.GMS that is included in chapter 5.

1 BALANCEP(PRIMARY,"PROC-USE") =
 2 +SUM(NONFEED$(PROCBUD(PRIMARY,NONFEED) GT 0),
 3 PROCESS.L(NONFEED)*PROCBUD(PRIMARY,NONFEED)) ;

4 BALANCEP(PRIMARY,"DOM-DEMAND") = DEMANDP.L(PRIMARY) ;
 5 BALANCEP(PRIMARY,"EXPORT") = EXPORTP.L(PRIMARY) ;
 6 BALANCEP(PRIMARY,"PRICEX100") = PRIMARYBAL.M(PRIMARY) * 100.;

In statement one, processing usage by primary commodities is added into a primary commodity

supply demand balance table called balancep. This processing use involves the optimal levels of

the processing variables (PROCESS.L) times data from the processing budgets (PROCBUD) as

computed in line 3. We also place the optimal levels of the primary demand (DEMANDP.L) and

export (EXPORTP.L) variables into our report through the code in lines 4 and 5. Line 6 adds in

the shadow price from the primary commodity balance (PRIMARYBAL.M)times a hundred so we

14-2

can display item with zero decimal places and get numbers down to the penny.

In general one can freely use report writing calculations like this to summarize the results

even suppressing the GAMS solution listing and only working from the summary reports.

14.2 Making Displays More Effective

GAMS displays can be enhanced in terms of form, content and ordering. GAMS often

orders things in a fashion that one dislikes and also has an undesirable format in terms of decimal

places, omissions of zeros, etc.

14.2.1 Display Element Ordering

Many users are frustrated with the ordering of set elements in the output. This can be

changed. First, however it is worthwhile knowing the rules that the ordering follows. To

understand the way GAMS orders display output, one has to understand the way that set elements

are stored. GAMS uses something called the unique element list (UEL) to store set elements. This

is a single list of all set elements. The elements enter that list in the order of their appearance and

that is the order in which they will appear in the output. This means if we have the sets ONE and

TWO with the elements below

set ONE /A,C,B,Total/
Set TWO /D,A,F,TOTAL/

and a parameter defined over the set TWO as follows,

Parameter item(two) /D 1,A 3, F 5/;
item(“total”)=sum(two$(not sameas(two,”total”)),item(two));

when displayed (DISPSET.GMS) will exhibit the order as follows

A 3.000, Total 9.000, D 1.000, F 5.000

where the elements “A” and “Total” appear before “D” without regard to the order in which the

14-3

set TWO was specified The reason is that “A” and “Total” appeared in set ONE and their names

were seen and put into the UEL before “D” and “F”.

One can try to take control of this in several ways. First, if the sets do not overlap other

than say in the use of some summary items like TOTAL one can change the name

of the TOTAL set element for example redefining set TWO and item as

Set TWO /D,A,F,TOTAL2/
Parameter item(two) /D 1,A 3, F 5/;
item(“total2”)=sum(two$(not sameas(two,”total2”)),item(two));

Under those circumstances (DISPSET2.GMS) the display is reordered to be

A 3.000, D 1.000, F 5.000, TOTAL2 9.000

with the TOTAL2 element at the end.

Second, one can introduce in effect a UEL set which contains all elements in the order

desired using set definitions as follows

set UELORDER /A,B,C,D,F,Total/
set ONE /A,C,B,Total/
Set TWO /D,A,F,TOTAL/

In that case a display of the set ONE (DISPSET3.GMS) is reordered to be

A , B , C , Total

and ITEM becomes

A 3.000, D 1.000, F 5.000, Total 9.000

where the appearance is governed by the order of appearance in the first set seen – UELORDER.

One may find this procedure difficult as it may be difficult to always include all items.

However the compiler can be enlisted as an aid by using a subsetting strategy. If the definition

above is slightly modified so sets ONE and TWO are subsets of UELORDER

14-4

set UELORDER /A,B,C,D,F,Total/
set ONE(UELORDER) /A,C,B,Total/
Set TWO(UELORDER) /D,A,F,TOTAL/

then including an item in set TWO without including that item in UELORDER generates compiler

errors.

Sometimes the desired order depends on the item being displayed and more desperate

measures may be in order. In this case the authors sometimes define an ordering set and include

that set in the definition of the items. Consider the more complex example (dispset4.gms) below

 1 Set numberordr /1*100/
 2 set One /A,B,C,D,F,Average,ITEMS/
 3 set order1(numberordr,One) /2.(A,D,F),1.Average,3.(B,C)/
 4 Set order2(numberordr,One) /2.(A,D,F),99.Average,1.(C,B)/
 5 Set PQ /Price,Quantity/
 6 Table Items(One,PQ)
 7 Price Quantity
 8 A 2 9000
 9 B 6 3000
 10 C 2.5 4000
 11 D 2.1 3000
 12 F 2.4 1.90;
 13 items("Average",PQ)= SUM(One,items(one,pq))
 14 /sum(one,1$items(one,pq));
 15 parameter items1(numberordr,one,pq) item ordered first way;
 16 items1(numberordr,one,pq)
 17 =sum(order1(numberordr,one),items(one,pq));
 18 parameter items2(numberordr,one,pq) item ordered second way;
 19 items2(numberordr,one,pq)
 20 =sum(order2(numberordr,one),items(one,pq));
 21 display items,items1,items2;

Here we have defined the set NUMBERORDR to provide the ordering help. In turn we define

alternative orders with respect to the ONE set in lines 3 and 4. Then we copy the information in

from the items array according to the two orders in lines 17 and 18 using parameters with an extra

dimension for the ordering set. Displays of the original data mirror the order in the One set.

---- 21 PARAMETER ITEMS
 Price Quantity

A 2.000 9000.000
B 6.000 3000.000
C 2.500 4000.000
D 2.100 3000.000
F 2.400 1.900
Average 3.000 3800.380

However the displays of the three dimensional sets are ordered first according to the

14-5

NUMBERORDR set since it is the first index in the parameter definition and it appeared first in the

program so it is first in the UEL list in GAMS.

---- 21 PARAMETER ITEMS1 item ordered first way
 Price Quantity
1.Average 3.000 3800.380
2.A 2.000 9000.000
2.D 2.100 3000.000
2.F 2.400 1.900
3.B 6.000 3000.000
3.C 2.500 4000.000

---- 21 PARAMETER ITEMS2 item ordered second way
 Price Quantity
1 .B 6.000 3000.000
1 .C 2.500 4000.000
2 .A 2.000 9000.000
2 .D 2.100 3000.000
2 .F 2.400 1.900
99.Average 3.000 3800.380

Note that in these statements the order is primarily controlled by the numberordr set but when

several elements have the same value for that set, then the ordering in the other sets (ONE in this

case) determines how the items appear. Sometimes this ordering is a simple as providing items like

TOTAL with a high number and all others with a low one.

14.2.2 Controlling the Ordering of the Parameter Indices As they Appear

An additional item that GAMS users may be frustrated with involves the ordering of the

way the indexes are referenced in a display statement. Considering, the small example

below(dispord.gms)

 1 set index1 /index11*index12/
 2 set index2 /index21*index22/
 3 set index3 /index31*index32/
 4 set index4 /index41*index42/
 5 parameter data(index1,index2,index3,index4);
 6 data(index1,index2,index3,index4)=2;
 7 display data;
 8 option data:0:1:3;display data;
 9 option data:0:3:1;display data;
 10 option data:0:0:4;display data;
 11 option data:0:2:2;display data;
 12 parameter data2(index2,index4,index1,index3);
 13 data2(index2,index4,index1,index3)
 14 = data(index1,index2,index3,index4);
 15 option data2:0:2:2;display data2

14-6

Here in this example we have the four dimensional parameter “data” defined over the sets index1

through index4. When a display occurs, what will happen regardless of the formatting in that

display is that the data for index four for vary most rapidly while the data for index one will vary

least rapidly. GAMS always varies the display from the right most stated element to the left most

element. Also by default if a parameter is defined with respect to four or more sets it will

presented with the right most set defining the columns in the display, the next two from the right

put in the row, and then the fourth and higher elements from the right will be altered one at a time

with a display for each item. See for example the LST file portion reproduced in table 14.1, in

which the display from line 7 of the above example appears. Here note that the index4 items are in

the columns and are varied the fastest, then index3 and index2 and finally index1. Also since this is

a four dimensional array we have a display section for the first element of index1, then a section for

the second element of index one.

Users may not find this display style consistent with what they want. The GAMS OPTION

statement permits one to alter this. In particular, an option statement of the form

OPTION itemname:decimals:row indices:column indices;

can modify the display formatting. Namely, when this option is executed it causes all subsequent

displays involving the named item to have the specified decimal places with the number of set items

allocated to rows and columns as specified . Three alternative examples appear in table 14.1,

notice in the line 8 display we have only the first index in the row definition but the second, third

and fourth are used in the column definition. Again note as one looks across the column, the

fourth index is the one varying the fastest than the third, and there is one row for each element of

the third. The second formatting alternative is in table 14.1 as controlled by the option in line 9

14-7

where we have three indices varied in the rows and one in the columns. A third alternative is given

in line 10 where data are displayed without any row and column distinctions because we allocated

zero of them to the rows and all to the columns. This is a particularly convenient way to lay items

out when one wants to use a text editor to clip data out and include them in subsequent GAMS

runs using a parameter statement.

There are several notes on display options that merit mention. First, if one has a five-

dimensional array but specifies less than five dimensions in the option command i.e. indicating two

by two then the extra dimensions will be used as in the index notation in the output associated with

line 7 of table 14.1. Thus one can specify less than the full dimensionality. But if one specifies

more than the full dimensionality a GAMS error arises. Second, the decimal control does have

nuances that will be discussed in the formatting section below.

Another feature which on occasion is frustrating involves the ordering of the way the Sets

are varied. Sometimes one might wish because the first index position to be varied fastest or some

other progression other that right to left. The only way to achieve this in GAMS is to create a new

parameter which has a new ordering of subscripts and copy the data over. An example of this is

given in lines 12-15 of the above example. The implications of this for the output order can be

seen by comparing lines 11 and 15 where because the indices have been reordered they come out

in a different order in the table display.

14.2.3 Reformatting the Appearance of Numbers

Yet another potential frustration with the output from GAMS displays involves numerical

formatting. Consider the example (numb.gms) which appears in table 14.2. There we define the

table DATA with rather disparate numbers. A resultant display of DATA yields

14-8

---- 8 PARAMETER DATA
 index21 index22
index11 1.000000E-5 1.000000E+7
index12 3.720 200.100

In that display GAMS mixes together exponential and normal format by default trying to print out

three decimal places. If such a display is unsatisfactory, there are several ways of altering its

appearance.

1) We can alter the number of decimals using the global option statement for example

reducing the default decimals in subsequent displays to one

option decimals=1;

yielding

---- 10 PARAMETER DATA
 index21 index22
index11 1.000000E-5 10000000.0
index12 3.7 200.1

In turn, we still get the exponential display for the number that is of the order ten to

the minus 5, but we don’t get the exponential display for the large number as it fits.

2) Users may wish to suppress small numbers in the display. For example, using

 data2(index1,index2)$(data2(index1,index2) lt 0.01)=0;

sets all numbers to zero which are less than .01. Note one needs to employ

absolute value if negative numbers are present i.e. using a command like:

 data2(index1,index2)$(abs(data2(index1,index2)) lt 0.01)=0;

yielding

---- 14 PARAMETER DATA2
 index21 index22

index11 10000000.0
index12 3.7 200.1

3) Users may wish to cap the value of large numbers. We can cause the output to

have the number infinity for anything greater than the number 10,000 using

14-9

data2(index1,index2)$(data(index1,index2) gt 10000)=inf;

yielding

---- 18 PARAMETER DATA2
 index21 index22
index11 1.000000E-5 +INF
index12 3.720 200.100

4) Users may wish to round numbers using syntax like

data2(index1,index2)=round(data(index1,index2),0);

. 5) Users may desire a report of percentage changes. These first need to be calculated

in a manner such as

 24 data4(index1,index2)$data2(index1,index2)=
 25 100*(data3(index1,index2)/data2(index1,index2)-1);
 26 data4(index1,index2)$(abs(data4(index1,index2)) lt 0.1)=0;
 27 data4(index1,index2)$(data2(index1,index2) eq 0)= na;

Here we are careful to use absolute values so negative changes are not zeroed out.

We also report numbers that would report percentage changes from a base of zero

with the coding “na”.

---- 29 PARAMETER DATA4
 index21 index22
index11 NA
index12 80.6 1.5

6) Local reformatting can be done on the decimal places for a table using the OPTION

display modifier as discussed in 14.2.2 or as implemented in line 29 where we

display the item data4 with one decimal place even though the active option for

decimals was set to three in line 15.

14.2.4 Reformatting Item Name Case and Appearance

Another item of concern in displays may be the appearance of the set names, parameter

names etc in terms of case. Users may wish the output to be in mixed upper and lower case or all

14-10

in upper case facilitating inclusion through a word processor into a report. Version 2.50 and

higher of GAMS preserve element case in the output. However, users should note that

1) The case form of an element such as a set name that is copied to the output follows

the conventions used elsewhere in GAMS in terms of the unique element list as

discussed in section 14.2.1. Namely, the case used is the first one encountered.

Thus in our examples above using the word “total” the output had whatever case

sensitive spelling of Total was first encountered in the GAMS program. Thus one

must insure that the appearance wanted in reflected in the first appearance of the

item in the program.

2) Internally GAMS does not distinguish with respect to case. Thus

item(“TOTAL”)
item(“total”)
item(“TotaL”)

would all refer to the same thing.

3) In GAMS 2.50 and greater indices can be up to 31 characters long and may

enclose special character spaces, etc. What one does when one wants such an index

is put it in quotes for example the following are valid set elements

 “Number of items”or “Money Spent ($)”.

14.2.5 Controlling Page Size and Width

Users may wish to exercise control over page width and length. The default page length is

usually 60 lines which means that longer file contain a lot of GAMS headers in inconvenient spots.

One can do is respecify page size in two ways.

1) Job specific page characteristics are specified on the GAMS call using the

14-11

syntax

GAMS modelname ps=n1 pw=n2

GAMS trnsport ps=9999 pw=100

where ps gives the page length and can be as small as 30 or as big as 9999

(may be bigger) and pw the page width which must be between 72 and 255.

2) The default page length and width can be altered by editing a file in their GAMS

source directory. In particular on Windows 95 machines the file is called

GMSPRM95.doc, or Gamsparm.doc and on NT and UNIX machines it has the

same format gmsprmnt.doc and gmsprmun.doc respectively. In this file one defines

the page length with a line ps followed by a space and a number

ps 1000

and page width with

pw number.

This alters the page size and page width for all future applications of GAMS using

that GAMS source. There are a number of other parameters that can be altered

through this mechanism as described in the file gamsparm.doc.

14.3 Controlling Output Volume

Often users of GAMS find that they get an awful lot more output than they want.

Generally, in applications these authors use a suite of three commands which greatly limit the

amount of output one gets from a model. These commands are as follows:

option limrow=0;
option limcol=0;
$offsymlist offsymxref

14-12

They cause GAMS to suppress the listing of the equations, variables, symbol list and symbol cross-

reference map. These may be useful output in some cases but ordinarily the authors find that

turning all these off is the appropriate first action especially so new users can find their output.

Another command which can be used is

option solprint=off;

which suppresses the variable and equation solution output. This is ordinarily only used when

calculated reports are being used which summarizes the output. One can also just get the nonzero

solution for key variables by displaying variablename.L , equationname.M or variablename.M.

Another output management scheme involves the use of the command

$offlisting

All lines after this command until either the end of the file (or the end of an include file) or a

$onlisting is found are not copied to the LST file. This often is used to help suppress the size of the

listing, where one for example doesn’t necessarily want a big long listing of a raw data file.

Another output management scheme we commonly use is as follows. Develop a code with

a substantial amount of report writing calculation and possible solution output. After executing

this code use the GAMS save and restart capability and save the program status. Then restart with

a piece of code which displays selected items. If additional items are desired, then display them.

This permits one to focus on only a few pieces of output but still have the full set available. Such a

procedure is partially present in the ASM model example used in chapter 5 where

ASMREPT.GMS computes a lot of reports but it does not print them all out.

One final note, when the solution is suppressed or many solves are being used in a loop and

report writing done on the output, it is useful to have a table or display of the solver status to

14-13

insure that infeasible or unbounded or other types of solution irregularities did not occur. One can

do this by displaying or saving the parameter modelname.modelstat i.e. for a model named agfor

run in a loop

solstat(run)=agfor.modelstat;

In turn a display will show values of 1 or 2 for successful solves (the GAMS model details these

results).

14.4 Including Slacks In the Output

GAMS unlike the rest of the mathematical programming world includes equation “levels”

in its output not slacks. An equation level for the equation AX#b is the term AX whereas a slack

is b-AX. Users desiring slacks can get them by using the command

option solslack=1;

14.5 Moving Beyond Display to Put

A lot more control over the output can be achieved by using the GAMS put commands.

However, with this control comes some cost. Usage of the put commands requires more technical

programming. Those with the latest release of the GAMS users guide will find a rather long

chapter on put which covers the technical language elements. Thus we will not cover those here

rather we will just present examples and overview discussion of put usage.

The first example we would like to show is a combination of report writing features and the

put. It appears in table 14.3 this is an excerpt from the file called invest2.gms and is an excerpt

that puts a report out regarding some investments. The resultant put file that arises from(with a

few blank line spaces removed) appears in table 14.4.

Let us examine the “notable assumption” section of that output. Line number 2 is

14-14

generated by lines 509 and 510 of table 14.3 where the calculated scalar “length” is put out as a 5

digit result with 2 decimal places. Similarly, line 513 and 514 put out the scalars that identify the

last month, day and year that define the investment plan as input in the associated invest.gms file.

Put commands can mix messages and calculated values into sentence like output.

Also note in the later part of the output on the “investment plan” that this mixes set element

definition names for the security issuer and three maturity date columns with calculated

parameters. Also note we can control the decimal places by item

 In general the PUT command allows generation of much more highly formatted reports

that can be used with decision makers or in published reports.

The put command can also be used to format data for export into other programs. Table

14.5 and 14.6 illustrate such cases. In 14.5 we have a excerpt of a larger program that we use to

dump data to a statistics program. We used this in a setting where we ran hundreds of alternative

runs then put out solution summary results in a fixed format that a regression code could be set up

to read. Panel B gives a sample of the output that we generated. Note the resultant data set has

the run name appearing first, then data in a fixed format.

Table 14.6 presents a similar case where data was dumped to a mapping program which

read data in comma delimited form. In this case we were able to use the PUT output control

feature for passing data to a spreadsheet. Namely, line 24 tells GAMS to use output control

option 5. The resultant output is in panel B. In that file GAMS automatically surrounded all text

elements with quotes and put a comma between all elements. These data are also in perfect shape

to be imported by a many program. For example, if one imports this as a text file in Lotus 123 and

tells LOTUS to parse on commas, then the data fits into the spreadsheet perfectly. In doing this

14-15

users do need to make sure that there are labels for each column in the spreadsheet. Thus in the

put statements in lines 26 and 30, we put the word “region” to label the set names of the regions.

Many other features of put files could be discussed. We will only note a couple more

aspects(Readers should study GAMS manual and the example on their web page -- under the

documentation section of www.gams.com).

1) When including data related to multiple set elements in a row, one uses loop

commands like in lines 26 and 28.

2) Put only skips to a new line when it finds a /. Thus multiple puts may define a single

line of output. For example in line 28, we first put out the region name and then

loop over a put that enters the data items. Finally we end the line with a slash (/).

3) Through these procedures GAMS allows one to put out either the set and variable

names or the associated text along with those, this can be helpful in some cases as

longer explanatory text can be included (using the te syntax).

The put command is the best way to insure high quality output while staying within GAMS.

It is also the best general way to move data from GAMS to other.

One other comment is that if one wants to put data say in the table editor in WordPerfect,

this can be achieved by moving the data through the put command to a spreadsheet and then

importing the data from the spreadsheet to the wordprocessor.

14.6 Interfacing with other Programs

The use of the PUT capability as well as other GAMS capabilities allows more advanced

interfaces with other programs and computers elsewhere. These topics are covered in Chapter 17.

14-16

14-17

Table 14.1 Alternative Display index options

---- 7 PARAMETER DATA – no option
INDEX 1 = index11

 index41 index42
index21.index31 2.000 2.000
index21.index32 2.000 2.000
index22.index31 2.000 2.000
index22.index32 2.000 2.000

INDEX 1 = index12
 index41 index42
index21.index31 2.000 2.000
index21.index32 2.000 2.000
index22.index31 2.000 2.000
index22.index32 2.000 2.000

---- 8 PARAMETER DATA – option allows 1 row by 3 columns (:0:1:3)
 index21 index21 index21 index21 index22 index22
 index31 index31 index32 index32 index31 index31
 index41 index42 index41 index42 index41 index42
index11 2 2 2 2 2 2
index12 2 2 2 2 2 2

 + index22 index22
 index32 index32
 index41 index42
index11 2 2
index12 2 2

---- 9 PARAMETER DATA – option allows 3 row by 1 columns (:0:3:1)
 index41 index42
index11.index21.index31 2 2
index11.index21.index32 2 2
index11.index22.index31 2 2
index11.index22.index32 2 2
index12.index21.index31 2 2
index12.index21.index32 2 2
index12.index22.index31 2 2
index12.index22.index32 2 2

---- 10 PARAMETER DATA – option allows 0 row by 5 columns (:0:0:5)
index11.index21.index31.index41 2, index11.index21.index31.index42 2
index11.index21.index32.index41 2, index11.index21.index32.index42 2
index11.index22.index31.index41 2, index11.index22.index31.index42 2
index11.index22.index32.index41 2, index11.index22.index32.index42 2
index12.index21.index31.index41 2, index12.index21.index31.index42 2
index12.index21.index32.index41 2, index12.index21.index32.index42 2
index12.index22.index31.index41 2, index12.index22.index31.index42 2
index12.index22.index32.index41 2, index12.index22.index32.index42 2

---- 11 PARAMETER DATA – option allows 2 row by 2 columns (:0:2:2)
 index31 index31 index32 index32
 index41 index42 index41 index42
index11.index21 2 2 2 2
index11.index22 2 2 2 2
index12.index21 2 2 2 2
index12.index22 2 2 2 2

---- 15 PARAMETER DATA2 – option allows 2 row by 2 columns (:0:2:2)
 index11 index11 index12 index12
 index31 index32 index31 index32
index21.index41 2 2 2 2
index21.index42 2 2 2 2
index22.index41 2 2 2 2
index22.index42 2 2 2 2

14-18

Table 14.2 Display Number Formatting

 1 set index1 /index11*index12/
 2 set index2 /index21*index22/
 3 table data(index1,index2)
 4 index21 index22
 5 index11 0.00001 10000000
 6 index12 3.72 200.1;
 7
 8 display data;
 9 option decimals=1;
 10 display data;
 11 parameter data2(index1,index2);
 12 data2(index1,index2)=data(index1,index2);
 13 data2(index1,index2)$(data2(index1,index2) lt 0.01)=0;
 14 display data2;
 15 options decimals=3;
 16 data2(index1,index2)=data(index1,index2);
 17 data2(index1,index2)$(data(index1,index2) gt 10000)=inf;
 18 display data2;
 19 parameter data3(index1,index2);
 20 parameter data4(index1,index2);
 21 data2(index1,index2)=data(index1,index2);
 22 data2(index1,index2)$(data2(index1,index2) lt 0.01)=0;
 23 data3(index1,index2)=3+data2(index1,index2);
 24 data4(index1,index2)$data2(index1,index2)=
 25 100*(data3(index1,index2)/data2(index1,index2)-1);
 26 data4(index1,index2)$(abs(data4(index1,index2)) lt 0.1)=0;
 27 data4(index1,index2)$(data2(index1,index2) eq 0)= na;
 28 display data3;
 29 option data4:1:1:1;display data4;

14-19

Table 14.3 Put file Example for Improved Formatting

503 file investp
504 put investp
505 put 'Notable Assumptions' //;
506 scalar length;
507 length=365.25/12;
508 Put '1. All Issues face value of $1,000 with no minimum investment '//
509 Put '2. All maturity month limits done in days using 365.25 days per year '/
510 put ' or 365.25/12 = ' length:5:2 ' days per month'//
511 put '3. All security share restrictions done in terms of face value -- '/
512 put ' not purchase price' //
513 Put '4. Portfolio value Maximized on Last day -- date' lastmonth:3:0
514 lastday:3:0 lastyear:5:0 //
515 Put '5. Portfolio acquired starting on ' firstmonth:3:0
516 firstday:3:0 firstyear:5:0 //
517 Put '6. All proceeds from Maturing Securities plus any initial unused cash'/
518 put ' placed in money market at interest rate of' annual:5:2//
520 Put 'Overall Results' //
521 Put ' Initial Funds ' Funds:10:0 //
522 Put ' Value of Ending Portfolio ' endvalue.l:10:0//
523 parameter ratio;
524 ratio=endvalue.l/funds;
525 parameter dailyror;
526 dailyror=ratio**(1/(daylast-dayfirst))-1;
527 ratio=ratio*100;
528 parameter annualror;
529 annualror=((1+dailyror)**365.25-1)*100;
530 Put ' Percentage Increase in Portfolio Value' ratio:10:4 //
531 Put ' Rate of Return ' annualror:10:4 /// /
532 parameter portvalue
533 facevalue
534 share
535 mmonth maturity month
536 cumul cumulative share
537 portage average maturity;
538 cumul=0;
539 portage=0;
540 portvalue=
541 sum((security,month,day,year)$invest.l(security,month,day,year),
542 invest.l(security,month,day,year)*
543 returndata(security,month,day,year,"facevalue"))/1000000;
544 Put 'Investment Plan'//
545 put ' ' @23 ' Number of Face Port. Cumul' /
 546 put ' Security ' @23 ' Maturity Months to Number Value Share Share' /
 547 put ' Issuer' @23 ' Date Maturity Bought Mill$ (%) (%) ' /
 548 scalar maxage /0/
 549 share18 /0/;
 550 loop(year,
 551 loop(month,
 552 loop(day,
 553 loop(security$invest.l(security,month,day,year),
 554 facevalue=
 555 invest.l(security,month,day,year)*
 556 returndata(security,month,day,year,"facevalue")/1000000;
 557 mmonth=(returndata(security,month,day,year,"maturity day")
 558 -dayfirst)/(365.25/12);
 559 portage= portage+facevalue*mmonth/portvalue;
 560 share=facevalue/portvalue*100;
 561 maxage=max(maxage,mmonth);
 562 if(mmonth gt 18,share18=share18+share);
 563 cumul=cumul+share;
 564 put security.tl:20 ' '
 565 monthn(month):3:0 dayn(day):3:0 yearn(year):5:0 mmonth:7:2
 566 invest.l(security,month,day,year):9:0
 567 facevalue:9:3 share:8:2 cumul:7:2 /
 568))));
 569 put 'Total ' portvalue:16:3 ' 100.00' /;
 570 put 'Average Maturity ' portage:8:2 ' ' //;

14-20

Table 14.4 Output of Put File in Table 14.3

Notable Assumptions

1. All Issues face value of $1,000 with no minimum investment
2. All maturity month limits done in days using 365.25 days per year
 or 365.25/12 = 30.44 days per month
3. All security share restrictions done in terms of face value --
 not purchase price
4. Portfolio value Maximized on Last day -- date 6 17 2003
5. Portfolio acquired starting on 6 19 1998
6. All proceeds from Maturing Securities plus any initial unused cash
 placed in money market at interest rate of 5.25

Overall Results
 Initial Funds 40000000
 Value of Ending Portfolio 52390860
 Percentage Increase in Portfolio Value 130.9771
 Rate of Return 5.5524

Investment Plan
 Number of Face Port. Cumul
 Security Maturity Months to Number Value Share Share
 Issuer Date Maturity Bought Mill$ (%) (%)
GE COMM. PAPER 7 21 1998 1.05 4000 4.000 10.01 10.01
AMERICAN EXPRESS CP 8 21 1998 2.07 4000 4.000 10.01 20.01
MERRILL LYNCH CP 8 21 1998 2.07 4000 4.000 10.01 30.02
FORD MOTOR CREDIT CP 9 21 1998 3.09 4000 4.000 10.01 40.03
TOYOTA CP 3 21 1999 9.03 3986 3.986 9.97 50.00
INTL PAPER 7 10 2000 24.71 2251 2.251 5.63 55.63
CATERPILLAR 7 10 2001 36.70 4000 4.000 10.01 65.64
J.P. MORGAN 1 15 2002 42.91 4000 4.000 10.01 75.64
MORGAN ST. DEAN 8 1 2002 49.41 4000 4.000 10.01 85.65
SALOMON BROS 1 15 2003 54.90 4000 4.000 10.01 95.66
SEARS ROEBUCK ACC 3 20 2003 57.00 1736 1.736 4.34 100.00
Total 39.973 100.00
Average Maturity 24.00

14-21

Table 14.5 Put file to Dump Data to regression program

Panel A PUT Instructions

loop(run,
 put run.tl;
 if(redone(run) gt 0,put 'r');put @12;
loop(fpitems,put fpscen(run,fpitems):13:3);
put /;
loop(decwant,s= fawelsum("Agconswelf",decwant,run)/1000;put s:13:0;);
put /;
loop(decwant,s= fawelsum("Agprodwelf",decwant,run)/1000;put s:13:2;);
put /;
);

Panel B Sample of Data saved

FARMPR121r 2.000 33.000 0.000 0.000 0.000 1.000
 1159 1240 1335 1441
 34.82 27.79 32.43 34.28
 1297 1383 1500 1628
FARMPR122r 2.000 33.000 0.000 0.000 875.000 1.000
 1159 1241 1333 1439
 35.07 27.02 32.56 34.38
 1296 1383 1498 1626
FARMPR123r 2.000 33.000 0.000 0.000 1750.000 1.000
 1159 1241 1329 1433
 35.07 26.92 33.03 38.61
 1296 1383 1495 1624

14-22

Table 14.6 Put file for Export to Mapping Program

Panel A PUT Instructions

 1 sets meas /nitrogen,phosporous,potassium,cropland,
 2 watererosn,winderosn,sediment,pub-water,pumpwater,
 3 chemicalco/;
 4 sets region /EAST,STHEAST,MIDWEST,WEST,STHCENTRAL,NORTHERNPL /
 5 table data(region,meas) data to be put
 6 nitrogen phosporous potassium chemicalco cropland
 7 EAST 0.96 -0.17 0.52 -0.24 0.00
 8 STHEAST 0.13 0.09 0.13 -0.12 0.02
 9 MIDWEST 0.40 0.36 0.54 -0.03 0.36
 10 WEST 1.74 1.51 1.73 0.59 1.63
 11 STHCENTRAL -0.09 -0.15 0.04 0.17 0.12
 12 NORTHERNPL 3.55 1.70 2.59 3.16 1.65
 13 + watererosn winderosn sediment pub-water pumpwater
 14 EAST -1.14 0.01 -1.16 0.00 -10.71
 15 STHEAST 3.13 0.67 3.64 0.34 0.00
 16 MIDWEST -0.23 0.59 -0.23 0.00 -1.11
 17 WEST 0.57 0.02 0.74 0.01 0.26
 18 STHCENTRAL -0.16 -1.33 -0.08 0.00 -1.55
 19 NORTHERNPL 0.92 -3.06 0.85 0.00 -0.07
 21 file mapdat2;
 22 put mapdat2;
 23 mapdat2.pw=250;
 24 mapdat2.pc=5;
 25 set s1(meas) /nitrogen,phosporous,potassium,chemicalco,cropland/
 26 put 'region'; loop(s1,put s1.tl); put /;
 27 loop(region,
 28 put region.tl ; loop(s1,put data(region,s1):10:2); put /);
 29 set s2(meas) / watererosn,winderosn,sediment,pub-water,pumpwater/
 30 put 'region'; loop(s2,put s2.tl); put /;
 31 loop(region,
 32 put region.tl ; loop(s2,put data(region,s2):10:2); put /);

Panel B Put Output

"region","nitrogen","phosporous","potassium","cropland","chemicalco"
"EAST",0.96,-0.17,0.52,0.00,-0.24
"STHEAST",0.13,0.09,0.13,0.02,-0.12
"MIDWEST",0.40,0.36,0.54,0.36,-0.03
"WEST",1.74,1.51,1.73,1.63,0.59
"STHCENTRAL",-0.09,-0.15,0.04,0.12,0.17
"NORTHERNPL",3.55,1.70,2.59,1.65,3.16
"region","watererosn","winderosn","sediment","pub-water","pumpwater"
"EAST",-1.14,0.01,-1.16,0.00,-10.71
"STHEAST",3.13,0.67,3.64,0.34,0.00
"MIDWEST",-0.23,0.59,-0.23,0.00,-1.11
"WEST",0.57,0.02,0.74,0.01,0.26
"STHCENTRAL",-0.16,-1.33,-0.08,0.00,-1.55
"NORTHERNPL",0.92,-3.06,0.85,0.00,-0.07

15-1

Chapter 15 Sensitivity Analysis

Occasionally users are interested in getting sensitivity analysis information from GAMS

often in the form of LP ranging analysis results. Unfortunately, the base version of GAMS does

not yield such information. The user wishing such information has two alternatives. First, one

may cause the model to be repeatedly solved varying a parameter and examine the results. Second,

one can use solver dependent features of GAMS (which currently work with OSL or CPLEX) and

retrieve the ranging information. In this chapter we cover how to obtain such information.

15.1 Obtaining Ranging Analyses From the GAMS Solvers

GAMS provides a document through its web-page (www.gams.com) which gives

instructions on how to get ranging analyses when using the OSL or CPLEX solvers. Use of this

approach requires one to implement an options file telling the solver to generate all possible

selected ranging information. There is also an option one can use which causes the ranging

information to be saved in an auxiliary file importable by GAMS, subject to some potential small

editing changes. An example of the usage of these features is given in Table 15.1. In particular,

suppose that we use our transportation model again and in using the transportation model we

invoke OSL as the solver (line 53). We also need to activate the options file (line54) and instruct

GAMS to write a dictionary file of type 4(line 55). Then within an options file named OSL.opt (or

CPLEX.opt if using CPLEX), we enter the commands

rhsrng
objrng

This in turn causes OSL to do the right-hand side and objective function ranging and the

information in Table 15.2 are generated in the list file.

15-2

It may not only be desirable to have such information in the list file thus GAMS also

provides a way of generating the sensitivity information on a subset of the model equations and

variables. In particular, if rather than wanting the ranging information on all equations the

information is only wanted for selected items, one uses the syntax in the options file like that below

rhsrng supplyeq,demandeq

objrng shipments

in which case only the named equations (supplyeq,demandeq) and named variables (shipments) will

have ranging information generated for them.

Finally the user may desire to use ranging information in GAMS output reports or

calculations. This requires several additional steps.

c) Enter a line in the option file which specifies the name of a file in which GAMS

importable code containing the ranges will be written.

rhsrng
objrng
rngrestart trnsport.rng

where in this case the name is trnsport.rng. The ranging file that is written by the

GAMS solver is in Table 15.3.

d) Stop execution of the original program at this point and save a GAMS restart file.

This can be accomplished using a command like the following.

gams tranrng -s sav

e) Construct a continuation file starting up form the restart file using a command like

gams addrang -r sav

In that file include the range file and a definition of the set rnglim as follows

15-3

set rnglim /lo,up/

In our example this would mean we construct a file like the following

set rnglim /lo,up/
$include trnsrnge.rng
display demandeqr,shipmentsr;

where the last line display the ranges. One could also use the ranges in calculations

as with any other piece of GAMS data.

Note in Table 15.3 there is one flaw in the GAMS procedure and this is that the variable

and equation names are simply augmented by the three letter code RNG and due to the current ten

character limitation we end up with names which are in excess of ten characters. When directly

included this file caused compilation errors. However we simply reduced the names down to

acceptable lengths and continued shortening the RNG just to a R.

15.2 Automatic Sensitivity Analyses Using Looping Features

Given GAMS’ capability to solve related problems in loops another way one can do

sensitivity analyses is by proposing alternative scenarios. Consider the risk model in table 15.4. In

this model suppose we wish to see how sensitive the solution is to alternative risk aversion

coefficients. We do this by defining a set of risk aversion coefficients (lines 45-47) and then

defining a loop (lines 50-62) which replaces the active risk aversion coefficients then solve the

model and save information for a report. The procedure for repeated solution and report writing

will be more adequately discussed in chapter 16. For now let us just say that the basic approach to

this form of sensitivity analyses is to set up data for scenarios, then run the alternative scenarios

and report on the solutions.

15-4

Table 15.1 Listing of file employing Sensitivity Analysis

 1 * DATA DEFINITION
 2
 3 SETS PLANT PLANT LOCATIONS
 4 /NEWYORK , CHICAGO , LOSANGLS/
 5 MARKET DEMAND MARKETS
 6 /MIAMI, HOUSTON, MINEPLIS, PORTLAND/
 7
 8 PARAMETERS SUPPLY(PLANT) QUANTITY AVAILABLE AT EACH PLANT
 9 /NEWYORK 100, CHICAGO 275, LOSANGLS 90/
 10 DEMAND(MARKET) QUANTITY REQUIRED BY DEMAND MARKET
 11 /MIAMI 100, HOUSTON 90,
 12 MINEPLIS 120, PORTLAND 90 /;
 13
 14 TABLE DISTANCE(PLANT,MARKET) DISTANCE FROM EACH PLANT TO EACH MARKET
 15
 16 MIAMI HOUSTON MINEPLIS PORTLAND
 17 NEWYORK 1300 1800 1100 3600
 18 CHICAGO 2200 1300 700 2900
 19 LOSANGLS 3700 2400 2500 1100
 20
 21 ;
 22
 23 * DATA CALCULATION
 24
 25 PARAMETER COST(PLANT,MARKET) CALCULATED COST OF MOVING GOODS;
 26 COST(PLANT,MARKET) = 50 + 1 * DISTANCE(PLANT,MARKET);
 27
 28 * MODEL DEFINITION
 29
 30 POSITIVE VARIABLES
 31 SHIPMENTS(PLANT,MARKET) AMOUNT SHIPPED OVER A TRANSPORT ROUTE;
 32 VARIABLES
 33 TCOST TOTAL COST OF SHIPPING OVER ALL ROUTES;
 34 EQUATIONS
 35 TCOSTEQ TOTAL COST ACCOUNTING EQUATION
 36 SUPPLYEQ(PLANT) LIMIT ON SUPPLY AVAILABLE AT A PLANT
 37 DEMANDEQ(MARKET) MINIMUM REQUIREMENT AT A DEMAND MARKET;
 38
 39 TCOSTEQ.. TCOST =E=
 40 SUM((PLANT,MARKET), SHIPMENTS(PLANT,MARKET)*
 41 COST(PLANT,MARKET));
 42
 43 SUPPLYEQ(PLANT).. SUM(MARKET, SHIPMENTS(PLANT, MARKET))
 44 =L= SUPPLY(PLANT);
 45
 46 DEMANDEQ(MARKET).. SUM(PLANT, SHIPMENTS(PLANT, MARKET))
 47 =G= DEMAND(MARKET);
 48
 49 MODEL TRANSPORT /ALL/;
 50
 51 * MODEL SOLUTION
 52 display cost;
 53 option lp=osl;
 54 transport.optfile=1;
 55 transport.dictfile=4;
 56 SOLVE TRANSPORT USING LP MINIMIZING TCOST;

15-5

Table 15.2 GAMS Output for Sensitivity Analysis

EQUATION NAME LOWER CURRENT UPPER
------------- ----- ------- -----
TCOSTEQ -INF 0 +INF
SUPPLYEQ(NEWYORK) 100 100 +INF
SUPPLYEQ(CHICAGO) 210 275 +INF
SUPPLYEQ(LOSANGLS) 90 90 +INF
DEMANDEQ(MIAMI) 0 100 100
DEMANDEQ(HOUSTON) 0 90 155
DEMANDEQ(MINEPLIS) 0 120 185
DEMANDEQ(PORTLAND) 0 90 90

VARIABLE NAME LOWER CURRENT UPPER
------------- ----- ------- -----
SHIPMENTS(NEWYORK, MIAMI) -1350 0 900
SHIPMENTS(NEWYORK, HOUSTON) -500 0 +INF
SHIPMENTS(NEWYORK, MINEPLIS) -400 0 +INF
SHIPMENTS(NEWYORK, PORTLAND) -2500 0 +INF
SHIPMENTS(CHICAGO, MIAMI) -900 0 +INF
SHIPMENTS(CHICAGO, HOUSTON) -1350 0 500
SHIPMENTS(CHICAGO, MINEPLIS) -750 0 400
SHIPMENTS(CHICAGO, PORTLAND) -1800 0 +INF
SHIPMENTS(LOSANGLS, MIAMI) -2400 0 +INF
SHIPMENTS(LOSANGLS, HOUSTON) -1100 0 +INF
SHIPMENTS(LOSANGLS, MINEPLIS) -1800 0 +INF
SHIPMENTS(LOSANGLS, PORTLAND) -1150 0 1800
TCOST 2.22e-016 1 +INF

15-6

Table 15.3 File automatically Generated by GAMS with ranging information

PARAMETER TCOSTEQRNG(RNGLIM) /
LO -INF
UP +INF
/;
PARAMETER SUPPLYEQRNG(PLANT,RNGLIM) /
NEWYORK.LO 100
NEWYORK.UP +INF
CHICAGO.LO 210
CHICAGO.UP +INF
LOSANGLS.LO 90
LOSANGLS.UP +INF
/;
PARAMETER DEMANDEQRNG(MARKET,RNGLIM) /
MIAMI.LO 0
MIAMI.UP 100
HOUSTON.LO 0
HOUSTON.UP 155
MINEPLIS.LO 0
MINEPLIS.UP 185
PORTLAND.LO 0
PORTLAND.UP 90
/;
PARAMETER SHIPMENTSRNG(PLANT,MARKET,RNGLIM) /
NEWYORK.MIAMI.LO -1350
NEWYORK.MIAMI.UP 900
NEWYORK.HOUSTON.LO -500
NEWYORK.HOUSTON.UP +INF
NEWYORK.MINEPLIS.LO -400
NEWYORK.MINEPLIS.UP +INF
NEWYORK.PORTLAND.LO -2500
NEWYORK.PORTLAND.UP +INF
CHICAGO.MIAMI.LO -900
CHICAGO.MIAMI.UP +INF
CHICAGO.HOUSTON.LO -1350
CHICAGO.HOUSTON.UP 500
CHICAGO.MINEPLIS.LO -750
CHICAGO.MINEPLIS.UP 400
CHICAGO.PORTLAND.LO -1800
CHICAGO.PORTLAND.UP +INF
LOSANGLS.MIAMI.LO -2400
LOSANGLS.MIAMI.UP +INF
LOSANGLS.HOUSTON.LO -1100
LOSANGLS.HOUSTON.UP +INF
LOSANGLS.MINEPLIS.LO -1800
LOSANGLS.MINEPLIS.UP +INF
LOSANGLS.PORTLAND.LO -1150
LOSANGLS.PORTLAND.UP 1800
/;
PARAMETER TCOSTRNG(RNGLIM) /
LO 0
UP +INF
/;

15-7

Table 15.4 Looping Sensitivity Analysis Example

 2 OPTION LIMCOL = 0; OPTION LIMROW = 0;
 3 SETS STOCKS POTENTIAL INVESTMENTS / BUYSTOCK1*BUYSTOCK4 /
 4 EVENTS EQUALLY LIKELY STATES OF NATURE /EVENT1*EVENT10 / ;
 5 ALIAS (STOCKS,STOCK);
 6 PARAMETERS PRICES(STOCKS) PURCHASE PRICES OF THE STOCKS
 7 / BUYSTOCK1 22
 8 BUYSTOCK2 30
 9 BUYSTOCK3 28
 10 BUYSTOCK4 26 / ;
 11 SCALAR FUNDS TOTAL INVESTABLE FUNDS / 500 / ;
 12 TABLE RETURNS(EVENTS,STOCKS) RETURNS BY STATE OF NATURE EVENT
 13 BUYSTOCK1 BUYSTOCK2 BUYSTOCK3 BUYSTOCK4
 14 EVENT1 7 6 8 5
 15 EVENT2 8 4 16 6
 16 EVENT3 4 8 14 6
 17 EVENT4 5 9 -2 7
 18 EVENT5 6 7 13 6
 19 EVENT6 3 10 11 5
 20 EVENT7 2 12 -2 6
 21 EVENT8 5 4 18 6
 22 EVENT9 4 7 12 5
 23 EVENT10 3 9 -5 6
 24 PARAMETERS
 25 MEAN (STOCKS) MEAN RETURNS TO X(STOCKS)
 26 COVAR(STOCK,STOCKS) VARIANCE COVARIANCE MATRIX;
 27 MEAN(STOCKS) = SUM(EVENTS , RETURNS(EVENTS,STOCKS) / CARD(EVENTS));
 28 COVAR(STOCK,STOCKS)
 29 = SUM (EVENTS ,(RETURNS(EVENTS,STOCKS) - MEAN(STOCKS))
 30 *(RETURNS(EVENTS,STOCK)- MEAN(STOCK)))/CARD(EVENTS);
 31 DISPLAY MEAN , COVAR ;
 32 SCALAR RAP RISK AVERSION PARAMETER / 0.0 / ;
 33 POSITIVE VARIABLES INVEST(STOCKS) MONEY INVESTED IN EACH STOCK
 34 VARIABLE OBJ NUMBER TO BE MAXIMIZED ;
 35 EQUATIONS OBJJ OBJECTIVE FUNCTION
 36 INVESTAV INVESTMENT FUNDS AVAILABLE;
 37 OBJJ..
 38 OBJ =E= SUM(STOCKS, MEAN(STOCKS) * INVEST(STOCKS))
 39 - RAP*(SUM(STOCK, SUM(STOCKS,
 40 INVEST(STOCK)* COVAR(STOCK,STOCKS) *INVEST(STOCKS))));
 41 INVESTAV.. SUM(STOCKS, PRICES(STOCKS) * INVEST(STOCKS)) =L= FUNDS ;
 42 MODEL EVPORTFOL /ALL/ ;
 43 SCALAR VAR THE VARIANCE ;
 44 SET RAPS RISK AVERSION PARAMETERS /R0*R4/
 45 PARAMETER RISKAVER(RAPS) RISK AVERSION COEFICIENT BY RISK AVERSION PARAMETER
 46 /R0 0.00000, R1 0.00075,
 47 R2 0.01500, R3 0.30000, R4 1/
 48 PARAMETER OUTPUT(*,RAPS) RESULTS FROM MODEL RUNS WITH VARYING RAP
 49 OPTION SOLPRINT = OFF;
 50 LOOP (RAPS,RAP=RISKAVER(RAPS);
 51 SOLVE EVPORTFOL USING NLP MAXIMIZING OBJ ;
 52 VAR = SUM(STOCK, SUM(STOCKS,
 53 INVEST.L(STOCK)* COVAR(STOCK,STOCKS) * INVEST.L(STOCKS))) ;
 54 OUTPUT("RAP",RAPS)=RAP;
 55 OUTPUT(STOCKS,RAPS)=INVEST.L(STOCKS);
 56 OUTPUT("OBJ",RAPS)=OBJ.L;
 57 OUTPUT("MEAN",RAPS)=SUM(STOCKS, MEAN(STOCKS) *INVEST.L(STOCKS));
 58 OUTPUT("VAR",RAPS) = VAR;
 59 OUTPUT("STD",RAPS)=SQRT(VAR);
 60 OUTPUT("SHADPRICE",RAPS)=INVESTAV.M;
 61 OUTPUT("IDLE",RAPS)=FUNDS-INVESTAV.L
 62);
 63 DISPLAY OUTPUT;

15-8

Table 15.5 Looping Sensitivity Example Output

 R0 R1 R2 R3 R4

BUYSTOCK1 1.273 3.905 3.835
BUYSTOCK2 5.324 12.420 5.354 4.958
BUYSTOCK3 17.857 12.152 3.550 1.064 0.968
BUYSTOCK4 8.602 9.223
RAP 7.500000E-4 0.015 0.300 1.000
OBJ 148.214 135.688 123.380 102.254 66.674
MEAN 148.214 141.331 129.839 117.774 117.230
VAR 19709.821 7523.441 430.560 51.734 50.556
STD 140.392 86.738 20.750 7.193 7.110
SHADPRICE 0.296 0.260 0.234 0.173 0.032

16-1

Chapter 16 Conducting a Comparative Model Analysis

Models are almost always constructed to be used in a comparative statics analysis. Such an

analysis involves multiple model solutions each of which reflects alternative assumptions in terms

of data, imposed constraints, fixed variables etc. (each alternative model setup will be called a

scenario from here on). Such studies examine how the modeled entity reacts to the scenarios and

usually involves a comparison of results across scenarios along with potential examination of

results within a scenario. GAMS permits such repeated analyses. Here we cover procedures for:

a) altering data; b) activating and deactivating model structural components; c) setting up

comparative report writing ; and d) repeatedly solving the model.

16.1 Basic Structure of a Comparative Analysis

The basic structure of a comparative analysis is outlined in Figure 16-1. The first three

boxes reflect preparatory steps which would be done in a conventional GAMS program where one

sets up the initial data and model then solves. In the box labeled step 1, the comparative model

analysis begins. There the scenarios are identified and the scenario data defined. After that we

save the data that are to be changed during the scenario runs preserving “base” scenario values.

We then enter a loop that is repeated for each scenario to be analyzed. In that loop the first task is

to restore the data to its base scenario levels(step 3). This is done so that we always start from the

same data. For example if we are altering prices in some scenarios and costs in others once we

changed the prices they will be altered forever unless they are changed back (restored) to their

original values. Then the data and model differences for that scenario are imposed in step 4 and

the model solved. Step 6 involves a report on the individual scenario with items displayed as

desired. Then in step 7 data for a cross scenario comparative report is saved. In step 8 we check

16-2

to see if more scenarios are to be solved and if so return to repeat steps 3-8 until all scenarios are

completed. Finally, we display a comparative report which presents the information saved across

scenarios.

Example of such a procedure is given in the context of the basic resource allocation

problem (see Chapter 5 of McCarl and Spreen for discussion of the problem). Here we will solve a

base version of the model then alter it so the labor and lathe constraints are suppressed and finally

solve a version with 25% higher prices for fancy chairs.

 Table 16.1 contains the GAMS file that does this. Lines 1-47 define the base model

constituting the preparatory steps A-C in figure 16.1. Several model structure features are present

to allow the analysis. First, in line 43, the existence of available resource constraint has a $ sign

condition attached. This causes the constraints to be active only when there is non zero resource

availability and provides us with the mechanism to suppress the labor and lath constraints. Also in

lines 72-77 we have defined and filled arrays wherein the original resource availability and prices

will be saved.

The scenario steps begin in Line 70 where we define a set which contains the scenario

names. In this case we will run: a) a base case which leaves all the data alone; b) a case where the

labor constraint is suppressed which is implemented by setting the labor endowment to zero; c) a

case where the large lathe constraint is suppressed which is implemented by setting the large lathe

endowment to zero; and d) a high price fancy chair scenario. Data further defining the scenarios

are entered in lines 79-85.

Lines 87-105 execute our comparative model analysis loop. Lines 88-89 reestablish all

data at their original levels. Lines 90-92 put in the data appropriate to the scenario. Line 94 then

16-3

executes a solution while lines 96-98 do individual scenario report writing and lines 101-104 store

data into arrays for the comparative report. Finally the comparative report is displayed in line 108

after all the solutions are completed. The resultant output is given in Table 16.2. Note the results

show varying profits, production patterns, resource usages, and resource values across the

scenarios.

16.2 Revising Data

One important concern when doing comparative statics analysis over a number of scenarios

involves proper management of data revisions. Modelers must be aware then when a number is

changed in GAMS is changed permanently. If one has the following GAMS code

1 SCALAR MYDATA /1/

2 MOREDATA /2/;

3 DISPLAY MYDATA,MOREDATA;

4 MYDATA=3;

5 MOREDATA=MOREDATA*10;

6 DISPLAY MYDATA,MOREDATA;

then the initial value of MYDATA and MOREDATA are 1 and 2 respectively. But after lines 5

and 6 these values have changed to 3 and 20 and will remain so for the rest of the GAMS

execution, the 1 and 2 are gone. Thus, if one places a new value in during an analysis for an item,

then that item is permanently changed unless one resets that value. This may not be desirable in a

comparative statics analysis as one may wish to fun first with more resources but original prices

then with the original level of resources but with altered prices. The resources will only be reset to

16-4

their original values if the modeler explicitly enters instructions to do so.

This point is illustrated in table 16.1 example where parameters are defined into which the

original data is to be saved in lines 72-73 while data are stored therein in lines 76-77 and before

any scenario alterations are put in place the data are reset to their original vales in lines 88-89. If

this were not done the data changes would accumulate during the scenarios.

For example the commands

SCALAR LAND /100/

PARAMETER SAVELAND;

SAVELAND = LAND;

 SET LANDCHANGE SCENARIOS FOR CHANGES IN LAND/R1,R2,R3/

 PARAMETER VALUE(LANDCHANGE) PERCENT CHANGE IN LAND

 /R1 +10 , R2 + 20 , R3 +30/

LOOP (LANDCHANGE,

 LAND = LAND * (1 + VALUE (LANDCHANGE) / 100.));

results in land equaling 110, 132 and 171.6 during the loop. However, alteration of the calculation

statement so it operated from a saved parameter value

LAND = SAVELAND * (1 + VALUE (LANDCHANGE) / 100.)

results in values of 110 , 120, and 130.

One other important item involves computations. GAMS automatically recomputes all

terms specified in the model specification equations (the.. expressions). However, the other

computations encountered when setting up the model are not repeated. This leads to two cases

that one need be concerned about. Suppose a model was setup as follows:

Price(Crop) = 2.00;
Yield(Crop) = 100;

16-5

Cost(Crop) = 50;
Revenue (Crop) = Price(Crop)*Yield(Crop)-Cost(Crop);
Equations
obj objective function
Land Land available;
Positive Variables Acres(Crop) Cropped Acres
Variables Objf Objective function;

obj.. objf=E=Sum(Crop,Revenue((Crop)*Acres(Crop));
Land.. Sum(Crop, Acres(Crop))=L=100;

Model FARM/ALL/
SOLVE FARM USING LP Maximizing Profit;
Price (“corn”)=2.50;
Solve FARM USING LP Maximizing Profit;
Revenue (Crop)=Price (CROP)*Yield(Crop)-Cost(Crop);
Solve FARM Using LP Maximizing Profit

In this case the first two solves would be identical since the parameter revenue was not

recomputed to reflect the change in the PRICE parameter for corn. The third solution could differ

since revenue is recomputed.

One could also fix this by specifying the objective function as

Obj.. ObjF=E=SUM(Crop,(Price(CROP)*Yield(CROP)-Cost (CROP))Acres(CROP);

Thus in general in a model one either has to include all calculations directly in the model

specification equations (those with the .. syntax), or one has to explicitly reissue statements

needed to recompute any items affected by data alterations.

Similarly, variable upper and lower bounds as well as variable scaling factors are not

automatically recomputed unless one reissues the statement defining .LO , .UP , .FX and .SCALE

cases. Thus, when any of these items depend on revised data, then the bound definition

calculations need to be repeated.

16.3 Changing Model Structure

16-6

Many comparative studies involve model structure modification. One of the big

advantages of using a modeling system is the ability to add/delete constraints, variables, or

equation terms and reanalyze the problem. This can be achieved with $ controls as done in lines

43-45 of Table 16.1. Suppose we consider an alternative example. Suppose the following lines

are put in a GAMS problem:

SCALAR ISITACTIVE tells whether items are active /0/;
CONDEQ$ISITACTIVE.. sum(stuff,x(stuff)) =L= 1;
EQNOTH(index).. sum(stuff,r(index,stuff)*x(stuff)) +

 4*sum(stuff,Y(stuff))$ISITACTIVE =L= 50;

This addition would cause the CONDEQ equation and the Y term in the EQNOTH equations to

only appear in the empirical model when the ISITACTIVE parameter was nonzero. Thus, the

sequence

ISITACTIVE = 0;
SOLVE MODELNAME USING LP MAXIMIZING OBJ;
ISITACTIVE =1;
SOLVE MODELNAME USING LP MAXIMIZING OBJ;

would cause the model to be solved with and without the constraint and term.

16.4 Solving Repeatedly

More than one model can be solved in a run. Thus, one can stack solve statements as in

the example immediately or loop over solves as in Table 16.1. In such case the optimal basis from

the model solved immediately before will provide the a starting basis for the solve at hand. This

means ordering of the scenarios for similarity of solutions.

16.5 Comparative Report Writing

The development of a comparative report writer is usually attractive when doing multiple

runs. Report writing commands which use information from the optimal solution (M and .L

16-7

references) use information from the most recent solution so one must save the data if comparing

reports are desired. A report writer which does that is illustrated in Table 16.1. In that case a

parameter (COMPAR) is defined over the scenario set (RUNS)-see line 74. In turn, during loop

execution the COMPAR array is saved with scenario dependent values of variables and shadow

prices. Finally, when the output is displayed a comparison across scenarios appears (Table 16.2).

16-8

Table 16.1. Example of Comparative Run

 2 SET PROCESS TYPES OF PRODUCTION PROCESSES
 3 /FUNCTNORM , FUNCTMXSML , FUNCTMXLRG
 4 ,FANCYNORM , FANCYMXSML , FANCYMXLRG/
 5 RESOURCE TYPES OF RESOURCES
 6 /SMLLATHE,LRGLATHE,CARVER,LABOR/ ;
 7
 8 PARAMETER PRICE(PROCESS) PRODUCT PRICES BY PROCESS
 9 /FUNCTNORM 82, FUNCTMXSML 82, FUNCTMXLRG 82
 10 ,FANCYNORM 105, FANCYMXSML 105, FANCYMXLRG 105/
 11 PRODCOST(PROCESS) COST BY PROCESS
 12 /FUNCTNORM 15, FUNCTMXSML 16 , FUNCTMXLRG 15.7
 13 ,FANCYNORM 25, FANCYMXSML 26.5, FANCYMXLRG 26.6/
 14 RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY
 15 /SMLLATHE 140, LRGLATHE 90,
 16 CARVER 120, LABOR 125/
 17
 18 TABLE RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE
 19
 20 FUNCTNORM FUNCTMXSML FUNCTMXLRG
 21 SMLLATHE 0.80 1.30 0.20
 22 LRGLATHE 0.50 0.20 1.30
 23 CARVER 0.40 0.40 0.40
 24 LABOR 1.00 1.05 1.10
 25 + FANCYNORM FANCYMXSML FANCYMXLRG
 26 SMLLATHE 1.20 1.70 0.50
 27 LRGLATHE 0.70 0.30 1.50
 28 CARVER 1.00 1.00 1.00
 29 LABOR 0.80 0.82 0.84;
 30
 31 POSITIVE VARIABLES
 32 PRODUCTION(PROCESS) ITEMS PRODUCED BY PROCESS;
 33 VARIABLES
 34 PROFIT TOTALPROFIT;
 35 EQUATIONS
 36 OBJT OBJECTIVE FUNCTION (PROFIT)
 37 AVAILABLE(RESOURCE) RESOURCES AVAILABLE ;
 38
 39 OBJT.. PROFIT =E=
 40 SUM(PROCESS,(PRICE(PROCESS)-PRODCOST(PROCESS))
 41 * PRODUCTION(PROCESS)) ;
 42
 43 AVAILABLE(RESOURCE)$RESORAVAIL(RESOURCE)..
 44 SUM(PROCESS,RESOURUSE(RESOURCE,PROCESS)*PRODUCTION(PROCESS))
 45 =L= RESORAVAIL(RESOURCE);
 46
 47 MODEL RESALLOC /ALL/;
 48 option solprint=off;
 49 option limrow=0;
 50 option limcol=0;
 51
 52 SOLVE RESALLOC USING LP MAXIMIZING PROFIT;
 55 set type types of chairs /functional,fancy/
 56 item items for reports /level,production,usage,value/
 57 map(type,process) map of chair types to processes
 58 /functional.(FUNCTNORM , FUNCTMXSML , FUNCTMXLRG)

16-9

 59 fancy .(FANCYNORM , FANCYMXSML , FANCYMXLRG)/;
 60
 61 parameter resourstat(resource,item) resource status
 62 chairs(type) production of chairs;
 63
 64 resourstat(resource,"usage")=available.l(resource);
 65 resourstat(resource,"value")=available.m(resource);
 66 chairs(type)=sum(map(type,process),production.l(process));
 67
 68 display chairs,resourstat;
 69
 70 set runs /base,nolabor, noLRGLATHE ,hifancy/
 71
 72 parameter savRESORAv(RESOURCE) saved resource availability
 73 savprice(process) saved prices
 74 compar(item,*,runs) comparative report;
 75
 76 savRESORAv(RESOURCE)=RESORAVAIL(RESOURCE);
 77 savprice(process)=price(process);
 78
 79 table adjust(*,runs) alternative run configuration
 80 base nolabor noLRGLATHE hifancy
 81 smllathe 0
 82 lrglathe 0 1
 83 labor 0 1
 84 fancy 0 0.25
 85 functional 0 ;
 86
 87 loop(runs,
 88 RESORAVAIL(RESOURCE)=savRESORAv(RESOURCE);
 89 price(process)=savprice(process);
 90 RESORAVAIL(RESOURCE)$adjust(resource,runs)=0;
 91 price(process)$sum(map(type,process),adjust(type,runs))=
 92 price(process)*(1+sum(map(type,process),adjust(type,runs)));
 93
 94 SOLVE RESALLOC USING LP MAXIMIZING PROFIT;
 95
 96 resourstat(resource,"usage")=available.l(resource);
 97 resourstat(resource,"value")=available.m(resource);
 98 chairs(type)=sum(map(type,process),production.l(process));
 100 display chairs,resourstat;
 101 compar("level","profit",runs)=profit.l;
 102 compar("usage",resource,runs)=resourstat(resource,"usage");
 103 compar("value",resource,runs)=resourstat(resource,"value");
 104 compar("production",type,runs)=chairs(type);
 105);
 107 option decimals=2;
 108 display compar;

16-10

Table 16.2. Comparative Report Writing Output

---- 108 PARAMETER COMPAR comparative report

 BASE NOLABOR NOLRGLATHE HIFANCY

LEVEL .PROFIT 10417.29 11830.43 11002.82 12798.83
PRODUCTION.FUNCTIONAL 62.23 176.60 41.20 2.44
PRODUCTION.FANCY 78.20 103.52 119.02
USAGE .SMLLATHE 140.00 140.00 140.00 140.00
USAGE .LRGLATHE 90.00 90.00 90.00 90.00
USAGE .CARVER 103.09 70.64 120.00 120.00
USAGE .LABOR 125.00 125.00 125.00 97.93
VALUE .SMLLATHE 33.33 57.39 5.09 48.66
VALUE .LRGLATHE 25.79 42.17 42.17 40.58
VALUE .CARVER 34.63 19.45
VALUE .LABOR 27.44 27.44 49.08

16-11

Step 1: Define Scenarios and Data

Prep Step C: Initial Solve

Prep Step B: Setup Model

Prep Step A: Setup Data

Step 3: Restore Data to Original

Step 2: Save Data to be Altered

Step 7: Add to Cross Scenario Report

Step 6: Construct and DisplayScenario Report

Step 5: Solve Model

Step 4: Alter Data to Reflect Next Scenario

Step 9: Display Comparative Report

Step 8 Any More Scenarios to be Run

Yes

No

Figure 16.1 Outline of a Comparative Model Analysis

17-1

Chapter 17 Interfacing with other Programs

Users may find a need to interface GAMS with other programs. Such interfaces may span

the continuum from being interactive to a one way data pass where GAMS results are sent to a

spreadsheet package for summarization and graphing. One may wish this link to either be carried

out by a manual or an automated process. In this chapter, we cover a number of aspects of

communicating with other programs. We should also reference readers to the continuing

development efforts by Tom Rutherford and Michael Ferris who distribute interfaces with other

programs and with web based processes. Rutherford’s material is distributed through

http://robles.colorado.edu/~tomruth , Ferris’ can be inquired about through email contact to

ferris@cs.wisc.edu)

The presentation below is organized into three main sections. First, we deal with input

topics, then output issues followed by discussion of interactive applications.

17.1 Input

One may be interested in providing input to a GAMS program from another program.

This is done by providing GAMS executable instructions from the companion program. Such

instructions can be provided via three mechanisms. First, and most generally one can have the

companion program write a text file of GAMS executable code then including that code. The

second involves special purpose interfaces from particular types of programs such as spreadsheets.

The third involves the use of Rutherford’s computer generated interface. Each will be discussed

below.

17.1.1 General Purpose Approaches

The general mechanism via which GAMS can use data from another program is through

the use of the INCLUDE or the related BATINCLUDE , LIBINCLUDE, and SYSINCLUDE

17-2

syntaxes. The INCLUDE syntax simply includes a named file as part of the GAMS program, while

the other forms include code segments with substitutable parameters. The LIBINCLUDE syntax

causes a program to be included from by default the subdirectory INCLIB under the GAMS

system directory or more generally whatever directory is specified by the libincdir parameter in the

GAMS call or the gamsparm.txt file. The SYSINCLUDE syntax operates similarly to the

LIBINCLUDE except that the files which are utilized are drawn from the GAMS system directory

or wherever specified in the SYSINCDIR parameter of the GAMS start-up call or

GAMSPARM.TXT file. Each of these statements is explained in the GAMS systems manual, so

here we will confine our treatment to examples illustrating the general use of the procedures.

17.1.1.1 Including files – simple variants

Suppose one is running a GAMS program which creates a solution that is used in another

program to revise some input data. For example suppose an agricultural study is being done which

involves a GAMS solution of a model for each relevant period which gives crop acreage along

with a selection of rotation, tillage method and fertilization level. Also suppose a companion

program is being run which computes fertilizer carryover, yields under different management

regimes and erosion rates for the next period. This yield data would then be an input to the GAMS

model by including a file of GAMS instructions which contains those numbers. This would entail

the construction of an interfacing program which translated the crop simulation yield output into

GAMS instructions. Suppose this has been done and we have the file in a format like that below

* the first 5 lines and the last would be user defined and
 * would not come from companion program

set crops Crop names /corn, wheat/
set tillage tillage methods /conventional, notill/
set fert Fertilization level /fert1*fert3/
parameter

 yields(crops,tillage,fert) crop yields from simulator /

17-3

* the following lines would be from the other program
 corn.conventional.fert1 92.
 corn.conventional.fert2 120.
 corn.conventional.fert3 140.

 corn.notill.fert1 87
 corn.notill.fert2 117
 corn.notill.fert3 136
 wheat.conventional.fert1 42
 wheat.conventional.fert2 48
 wheat.conventional.fert3 54
 wheat.notill.fert1 42
 wheat.notill.fert2 48
 wheat.notill.fert3 54

* the line below would not be from other program
 /;

When implementing this one would most likely use the include file sequence as follows.

First,define the file to be included with the name fromprog.gms with the following content

 corn.conventional.fert1 92.
 corn.conventional.fert2 120.
 corn.conventional.fert3 140.

 corn.notill.fert1 87
 corn.notill.fert2 117
 corn.notill.fert3 136
 wheat.conventional.fert1 42
 wheat.conventional.fert2 48
 wheat.conventional.fert3 54
 wheat.notill.fert1 42
 wheat.notill.fert2 48
 wheat.notill.fert3 54

The redefine the GAMS program (includ.gms) above to be

set crops Crop names /corn, wheat/
set tillage tillage methods /conventional, notill/
set fert Fertilization level /fert1*fert3/
parameter

 yields(crops,tillage,fert) crop yields from simulator /
$include fromprog

 /;

In turn whenever this GAMS program was run the yields in the file fromprog.gms would be

incorporated. There are several items relevant to the above procedure which are meritorious of

mention.

17-4

1) When communicating between a program and GAMS one must use some pre-

agreed upon set element names and definitions for the items under those names. In

the above example this would entail a precise definition of the fertilizer, crop and

tillage item names as well as what is meant by the alternative fertilizer levels.

2) The data must be included in an acceptable GAMS format. Tables can be used

providing alignment under column labels is assured. We generally use the

parameter format as given above as this frequently simplifies programming in the

interface module since alignment is not a concern rather for each item one has to

enter the set element names separated by periods followed by the numerical value.

3) The file included is brought in at compile time for the GAMS program. Thus,

within any single GAMS program interaction is not possible as all of the files are

included at compile time. The only way around this is through the use of save and

restart files as will be discussed below.

4) Multiple includes of the same data may require a more complex structure as

discussed in the immediately following paragraphs.

17.1.1.2 Including files with substitutable parameters

One very useful feature within GAMS it the ability to use substitutable parameters in

include files. A user can include a file to alter the particular items being included. Let's suppose

for illustrative purposes that we have two data sets that we wish to merge into an overall

composite set. In particular suppose in file1 we have data for yields and costs of crops in time

period one, while in file2 we have data again on costs of yields of the crops for time period two.

We could use the following BATINCLUDE files to merge these data

17-5

Set periods /period1,period2/
 set crops /corn,wheat/

set items /yield,cost/
parameter Alldata(period,crops,items) merged data;
$batinclude mergedat 1
$batinclude mergedat 2

where the bat include file looked like the following.

table dataset%1(crops,items) data set %1
$include file%1
;
alldata("period%1",crops,items)=dataset%1(crops,items);

and file1 appears as follows

yield cost
corn 120 56
wheat 40 35

while file2 looks like

yield cost
corn 140 86
wheat 60 45

The net effect of the BATINCLUDE syntax is that the included file mergedat is called up with the

number following it name in the BATINCLUDE statement substituted where ever the %1 appears.

The first batinclude causes GAMS to see the file

table dataset1(crops,items) data set 1
$include file1
;
alldata("period1",crops,items)=dataset1(crops,items);

while the second causes execution of

table dataset2(crops,items) data set 2
$include file2
;
alldata("period2",crops,items)=dataset2(crops,items);

17-6

Note in both of these cases the file appears with the calling parameter from the BATINCLUDE

statement (which appears after the name of the file to be incorporated) substituted in place of the

%1.

The total effect of the above statements is that a GAMS program of the form in the

following LST file segment is executed.

 1 Set periods /period1,period2/
 2 set crops /corn,wheat/
 3 set items /yield,cost/
 4 parameter Alldata(periods,crops,items) merged data;
BATINCLUDE F:\MCCARL\574PROJ\EXAMPLES\CH17\MERGEDAT.GMS
 6 table dataset1(crops,items) data set 1
INCLUDE F:\MCCARL\574PROJ\EXAMPLES\CH17\FILE1.GMS
 8 yield cost
 9 corn 120 56
 10 wheat 40 35
 11 ;
 12 alldata("period1",crops,items)=dataset1(crops,items);
BATINCLUDE F:\MCCARL\574PROJ\EXAMPLES\CH17\MERGEDAT.GMS
 14 table dataset2(crops,items) data set 2
INCLUDE F:\MCCARL\574PROJ\EXAMPLES\CH17\FILE2.GMS
 16 yield cost
 17 corn 140 86
 18 wheat 60 45
 19 ;
 20 alldata("period2",crops,items)=dataset2(crops,items);

Notice that in this LST file GAMS has marked exactly in which files it is incorporating at each

stage.

The BATINCLUDE command can be a valuable part of a GAMS modelers repertoire

especially regarding output as will be discussed later. The LIBINCLUDE and SYSINCLUDE

syntaxes operate in an essential identical manner with the only difference being the locations from

which the files are sought. Under the BATINCLUDE syntax, files are assumed to be local in the

current working directory, whereas under the other two syntax forms special file locations are

utilized.

17-7

One additional note involves operation whenever more than one substitutable parameter is

present. Namely, when more than one parameter is used one enters the string %1 wherever the

first substitutable parameter is to be placed, %2 wherever the second one appears, %3 wherever

the third and so on. In turn GAMS replaces these items and executes the commands just just as if

original commands had been typed with the substituted characters within them.

The items substituted can be numbers, text characters or quoted strings including spaces or

special characters. For example (batinc2.gms) using a command of the form

$batinclude fileit 10 one "this is it" "a+b*c"

would result in a 10 being placed in where ever %1 is used the string "one" wherever %2 appears

and a+b*c used where ever a %4 appeared.

If we were to use such syntax in a more general setting like the following:

scalar a /10/
 b /5/

 c /4/
 one /0/
 d /2/ ;
$batinclude fileit 10 one "this is it" "a+b*c"
$batinclude fileit 20 d "this is next" "a+b+c"

In conjunction with in a fileit.gms file of the form.

%2 = %1 * (%4);
display '%3',%2 ;

Then the resultant file that GAMS executes is that in the LST file below.

 1 scalar a /10/
 2 b /5/
 3 c /4/
 4 one /0/
 5 d /2/ ;
BATINCLUDE F:\MCCARL\574PROJ\EXAMPLES\CH17\FILEIT.GMS
 7 one = 10 * (a+b*c);
 8 display 'this is it',one ;

17-8

BATINCLUDE F:\MCCARL\574PROJ\EXAMPLES\CH17\FILEIT.GMS
 10 d = 20 * (a+b+c);
 11 display 'this is next',d ;

This shows we can substitute formulas, numbers, output labels and many other things in context of

GAMS execution when using BATINCLUDE or one of the other include formats which allow

substitutable parameters.

17.1.1.3 Including files from other GAMS programs

One trick which is commonly used in GAMS programming is to incorporate results from

one GAMS program into another. This strategy is frequently used to incorporate a basis (see the

discussion on Rutherford's webSite or the chapter 11 discussion of GAMSBAS). One also may

also wish to include numerical results from one GAMS program into another. We have used this

strategy with large models when we

1) wished to include results from one run into another

2) wanted to pass solution information on to other members of modeling exercise

located at a distant location.

3) had a costly model to run and wished to preserve solutions for possible future

analyses.

We will not cover the mechanism for bringing such instructions into the program as this is

done via the $INCLUDE syntax which has already been discussed. For an example refer to

Chapter 11 where the basis file that is written is being included back into the GAMS program. We

also defer the discussion of how we write the data into a GAMS readable file until section 17..

One other strategy and that is possible is that one can properly format the display in a

GAMS program and then cut and paste the results into a file which is subsequently included in

other GAMS programs. This is most easily done using a display formatting option statement such

17-9

as

option dataitem:0:0:5;display dataitem;

which in the chapter 14 example results in a numeric display of the form

---- 10 PARAMETER DATA – option allows 0 row by 5 columns (:0:0:5)
index11.index21.index31.index41 2, index11.index21.index31.index42 2
index11.index21.index32.index41 2, index11.index21.index32.index42 2
index11.index22.index31.index41 2, index11.index22.index31.index42 2
index11.index22.index32.index41 2, index11.index22.index32.index42 2
index12.index21.index31.index41 2, index12.index21.index31.index42 2
index12.index21.index32.index41 2, index12.index21.index32.index42 2
index12.index22.index31.index41 2, index12.index22.index31.index42 2
index12.index22.index32.index41 2, index12.index22.index32.index42 2

More generally, this display is of the form.

 option itemname: n1:0:n2; display itemname;

where itemname is the thing to to be displayed ;
n1 is the number of decimal points one wishes in this display; and
n2 is the number of dimensions or set indices used in the parameter.

Thus if we had parameter DATA(A, B,C) and wanted four decimal places, we would use the

syntax

option data:4:0:3;display data;

When this syntax is run the GAMS LST file would look much like that above and one could copy

the results and paste them in a new file called toimport. Then in a target file where the results are

to be included one would employ syntax like the following.

set a /1,2,3/
set b / T,E,f/
set c /are, you, there/
parameter importdat(a, b,c) imported data /
$include toimport
/;

This would result in the data included in the target file.

We generally employ this option strategy (one where we allow zero row items and a

number of the column items equal to the number of sets defining the data item) for preparing data

17-10

to be exported. This allows us to generate data in a format readily incorporated a parameter

definition. Consequently, we do not have to worry about the issues of column alignment that

would need to be faced when using a table syntax. Nor do we need to worry about data

continuation when the table width does not readily fit across the page. More discussion of the

option command for output formatting appears in chapter 14 .

17.1.2 Special Sources

Data may also be included from a number of a special purpose programs. In particular

herein we discuss incorporation of data from spreadsheets, the matlab software, zip files, and files

from the ???? word processor. Most of these procedures were developed by Rutherford while the

matlab interface was developed by Michael Ferris.

17.1.2.1 Incorporation of data from spreadsheets

Data can be imported from spreadsheets using a program called SSLINK developed by

Rutherford. The witeup for this program is on the WebSite. To include sees the general format

is one includes a statement in a GAMS program of the form a

worksheets

17.1.2.2 Incorporation of data from MATLAB

matlab

17.1.2.3 Incorporation of data from ZIP and PRM files

zip

prm

17.1.3 Web based cgi

17.1.4 Toward more specific interfaces

17-11

visual basic

17.2 output

17.2.1 through put

general formatting

special , delimited formatting

to GAMS

spreadsheet imports

databases

17.2.2 special purpose links

17.2.2.1 Spreadsheets

Using Put

Other Means SSLINK

17.2.2.2 Graphics Programs

gnuplot

matlab

17.2.2.3 Other special interfaces

17.2.3 Interfacing other ways

pgm

zip files

17.3 Web based interface

17-12

17.4 Interactive interfaces

17.4.1 Interactive compiled program

17.4.2 save restart methods

17-13

*#########################
*Five examples in GNUPLOT
*#########################
$title Example 1: Directing GNUPLOT Output to Screen or File

set year /1971*1992/, crop /corn,wheat,sorghum,soybeans/;

Table Acreage(year,crop) Acreage by crop and year
 corn soybeans wheat sorghum

1971 64044 42701 47613 16296
1972 57412 46871 47241 13354
1973 61884 55794 53837 15855
1974 65345 52364 65585 13947
1975 67438 53572 69104 15342
1976 71238 49373 70755 14713
1977 70860 57600 66246 14096
1978 70264 63334 57046 13566
1979 72381 70560 61920 12895
1980 73020 67847 70982 12493
1981 74497 66174 80809 13706
1982 72693 69445 77929 14303
1983 51457 62532 61379 9988
1984 71841 66103 66917 15344
1985 75224 61603 64934 16823
1986 69159 58310 60723 13907
1987 59505 57190 55975 10568
1988 58250 57390 53189 9067
1989 64703 59555 62189 11143
1990 66952 56521 69243 9131
1991 68852 58031 57703 9922
1992 72145 58404 62387 12199
;

*1) show on screen

$setglobal gp_xl year
$libinclude c:\gams25\gnuplot Acreage

*2) save it on ex2.gif with the title and x and y axis label

$setglobal gp_title "Graphic of U.S. Acreage in 1000 acres"
$setglobal gp_key 'bottom right'

17-14

$setglobal gp_xl year
$setglobal gp_xlabel "Year"
$setglobal gp_ylabel "Thousand Acreages"
$setglobal gp_output 'ex2.gif'
$setglobal gp_term 'gif'
$libinclude c:\gams25\gnuplot Acreage

*3) save it on ex21.gif with the title, x and y label and GRID

$setglobal gp_title "Graphic of U.S. Acreage in 1000 acres"
$setglobal gp_key 'bottom right'
$setglobal gp_grid 'yes'
$setglobal gp_xl year
$setglobal gp_xlabel "Year"
$setglobal gp_ylabel "Thousand Acreages"
$setglobal gp_output 'ex21.gif'
$setglobal gp_term 'gif'
$libinclude c:\gams25\gnuplot Acreage

*4) save it on ex22.gif with the title, x and y label and a Range

$setglobal gp_title "Graphic of U.S. Acreage in 1000 acres"
$setglobal gp_key 'bottom right'
$setglobal gp_xrange '[11:20]'
$setglobal gp_xl year
$setglobal gp_xlabel "Year"
$setglobal gp_ylabel "Thousand Acreages"
$setglobal gp_output 'ex22.gif'
$setglobal gp_term 'gif'
$libinclude c:\gams25\gnuplot Acreage

*5) save it on ex23.gif with the linespoints

$setglobal gp_title "Graphic of U.S. Acreage in 1000 acres"
$setglobal gp_key 'bottom right'
$setglobal gp_style 'linespoints'
$setglobal gp_xl year
$setglobal gp_xlabel "Year"
$setglobal gp_ylabel "Thousand Acreages"
$setglobal gp_output 'ex23.gif'
$setglobal gp_term 'gif'
$libinclude c:\gams25\gnuplot Acreage

17-15

Figure 1: Ex2.gif

Figure 2: Ex21.gif

Figure 3:

17-16

Ex22.gif

Figure 4: Ex23.gif

*###############################
*Examples in SSDUMP

17-17

*###############################
$title example #1:SSDUMP
set year /1971*1992/
 crop /corn, soybeans, wheat, sorghum/
 subreg /txhiplains, txrolingpl, txcntblack, txeast, txedplat,
 txsouth, txtranspec/;

Table TXACRE(year,subreg,crop) Texas historical acreage by crops

 corn soybeans wheat sorghum

1971.TXHIPLAINS 244 51 1029 2926
1971.TXROLINGPL 317 521
1971.TXCNTBLACK 163 9 124 934
1971.TXEAST 34 9 67
1971.TXEDPLAT 2 8 106
1971.TXSOUTH 64 2 8 580
1971.TXTRANSPEC 7 8
1972.TXHIPLAINS 199 58 1185 2486
1972.TXROLINGPL 609 518
1972.TXCNTBLACK 142 35 142 988
1972.TXEAST 30 29 1 59
1972.TXEDPLAT 1 28 100
1972.TXSOUTH 45 3 23 601
1972.TXTRANSPEC 8 8
1973.TXHIPLAINS 367 131 2186 3030
1973.TXROLINGPL 817 645
1973.TXCNTBLACK 133 29 268 1261
1973.TXEAST 27 59 4 43
1973.TXEDPLAT 64 137
1973.TXSOUTH 72 7 52 893
1973.TXTRANSPEC 5 8
1974.TXHIPLAINS 541 88 1665 2175
1974.TXROLINGPL 1 1090 400
1974.TXCNTBLACK 125 24 393 1207
1974.TXEAST 34 34 6 74
1974.TXEDPLAT 1 72 131
1974.TXSOUTH 61 4 66 997
1974.TXTRANSPEC 5 9
1975.TXHIPLAINS 771 127 3060 2629
1975.TXROLINGPL 1840 617
1975.TXCNTBLACK 139 43 519 1498
1975.TXEAST 41 40 3 60
1975.TXEDPLAT 2 154 138
1975.TXSOUTH 91 5 92 1171
1975.TXTRANSPEC 26 2
1976.TXHIPLAINS 1210 75 2125 1890
1976.TXROLINGPL 4 1665 479
1976.TXCNTBLACK 132 48 690 1270
1976.TXEAST 21 53 17 48
1976.TXEDPLAT 2 74 149
1976.TXSOUTH 71 81 757
1976.TXTRANSPEC 40
1977.TXHIPLAINS 1211 152 2337 1320
1977.TXROLINGPL 3 1580 335
1977.TXCNTBLACK 165 74 555 1328
1977.TXEAST 37 103 19 30
1977.TXEDPLAT 5 124 121
1977.TXSOUTH 119 8 62 666
1977.TXTRANSPEC 19 8
1978.TXHIPLAINS 907 188 1285 1370
1978.TXROLINGPL 2 834 280
1978.TXCNTBLACK 199 51 474 1351

17-18

1978.TXEAST 33 103 18 31
1978.TXEDPLAT 3 46 88
1978.TXSOUTH 144 6 33 640
1978.TXTRANSPEC 5 8
1979.TXHIPLAINS 700 217 2393 1230
1979.TXROLINGPL 3 1370 290
1979.TXCNTBLACK 209 69 620 1188
1979.TXEAST 37 110 17 24
1979.TXEDPLAT 3 115 121
1979.TXSOUTH 173 16 72 731
1979.TXTRANSPEC 5 8
1980.TXHIPLAINS 735 65 2595 1137
1980.TXROLINGPL 3 1255 168
1980.TXCNTBLACK 226 37 1116 983
1980.TXEAST 28 122 62 27
1980.TXEDPLAT 2 85 79
1980.TXSOUTH 154 5 46 626
1980.TXTRANSPEC 23
1981.TXHIPLAINS 522 58 2750 1239
1981.TXROLINGPL 1 1864 195
1981.TXCNTBLACK 212 22 1511 894
1981.TXEAST 31 73 142 41
1981.TXEDPLAT 1 145 88
1981.TXSOUTH 187 87 822
1981.TXTRANSPEC 38 9
1982.TXHIPLAINS 523 445 2520 2180
1982.TXROLINGPL 2 1605 357
1982.TXCNTBLACK 237 55 1437 1062
1982.TXEAST 25 58 102 44
1982.TXEDPLAT 2 178 109
1982.TXSOUTH 167 2 108 682
1982.TXTRANSPEC 18 2
1983.TXHIPLAINS 400 108 1985 940
1983.TXROLINGPL 1 1275 237
1983.TXCNTBLACK 266 49 1069 657
1983.TXEAST 23 34 84 30
1983.TXEDPLAT 1 97 89
1983.TXSOUTH 203 51 589
1983.TXTRANSPEC 15
1984.TXHIPLAINS 532 40 2330 1295
1984.TXROLINGPL 3 1260 174
1984.TXCNTBLACK 415 32 1172 862
1984.TXEAST 35 44 66 26
1984.TXEDPLAT 1 90 72
1984.TXSOUTH 220 45 609
1984.TXTRANSPEC 10 8
1985.TXHIPLAINS 517 75 2620 1567
1985.TXROLINGPL 6 1680 287
1985.TXCNTBLACK 361 17 1175 861
1985.TXEAST 43 20 129 25
1985.TXEDPLAT 28 1 128 87
1985.TXSOUTH 216 93 591
1985.TXTRANSPEC 6 8
1986.TXHIPLAINS 467 56 2340 1468
1986.TXROLINGPL 5 1400 249
1986.TXCNTBLACK 403 26 845 764
1986.TXEAST 56 32 40 51
1986.TXEDPLAT 6 82 79
1986.TXSOUTH 163 67 476
1986.TXTRANSPEC 7 8
1987.TXHIPLAINS 412 40 1730 895
1987.TXROLINGPL 3 1113 191
1987.TXCNTBLACK 383 31 552 607
1987.TXEAST 30 21 43 36
1987.TXEDPLAT 3 87 68
1987.TXSOUTH 170 63 361
1987.TXTRANSPEC 3 8

17-19

1988.TXHIPLAINS 423 61 1472 668
1988.TXROLINGPL 3 930 123
1988.TXCNTBLACK 392 25 629 499
1988.TXEAST 36 31 45 21
1988.TXEDPLAT 3 58 56
1988.TXSOUTH 222 54 282
1988.TXTRANSPEC 3 9
1989.TXHIPLAINS 592 178 748 1208
1989.TXROLINGPL 3 1225 132
1989.TXCNTBLACK 369 49 774 643
1989.TXEAST 36 42 55 30
1989.TXEDPLAT 3 121 63
1989.TXSOUTH 182 5 66 308
1989.TXTRANSPEC 2 2
1990.TXHIPLAINS 621 28 1736 662
1990.TXROLINGPL 7 1354 126
1990.TXCNTBLACK 363 44 833 645
1990.TXEAST 34 34 53 23
1990.TXEDPLAT 3 127 63
1990.TXSOUTH 230 2 83 367
1991.TXHIPLAINS 642 24 1157 738
1991.TXROLINGPL 7 903 141
1991.TXCNTBLACK 375 38 556 720
1991.TXEAST 35 29 35 26
1991.TXEDPLAT 3 85 70
1991.TXSOUTH 238 2 56 409
1991.TXTRANSPEC 1
1992.TXHIPLAINS 694 56 1571 1146
1992.TXROLINGPL 8 1225 218
1992.TXCNTBLACK 405 87 754 1117
1992.TXEAST 38 66 48 40
1992.TXEDPLAT 3 2 115 109
1992.TXSOUTH 257 4 76 635
1992.TXTRANSPEC 2
;

parameter subacre(year,subreg) subreg acres ;
subacre(year,subreg)
 =sum(crop, txacre(year,subreg,crop));

parameter totacre(year) total texas acres ;
totacre(year)
 =sum(subreg, subacre(year,subreg));

*save the total Texas acres in one-dimensional array
$libinclude c:\gams25\ssdump totacre acre1.wk1

*save the Texas subregion acres in two-dimensional array
$libinclude c:\gams25\ssdump subacre acre2.wk1

*save the Texas acres by crop in three-dimensional array
$libinclude c:\gams25\ssdump txacre acre3.wk1

* The Spreadsheet of Acre1.wk1

17-20

* The Spreadsheet of Acre2.wk1

* The Spreadsheet of Acre3.wk1

*##########################
*Examples in SSIMPORT
*##########################
title example #2:SSIMPORT
set year /1971*1992/
 crop /corn, soybeans, wheat, sorghum/
 subreg /txhiplains, txrolingpl, txcntblack, txeast, txedplat,
 txsouth, txtranspec/;

parameter TXACRE(year,subreg,crop) Texas historical acreage by crops;

$libinclude c:\gams25\ssimport txacre im3.wk1 a1..f154
option txacre:0:2:1;display txacre;

parameter subacre(year,subreg) Texas subreg acres;

$libinclude c:\gams25\ssimport subacre im2.wk1 a1..h23
option subacre:0:1:1;display subacre;

parameter totacre(year) total texas acres;
$libinclude c:\gams25\ssimport totacre im1.wk1 a1..b22
option totacre:0:0:1;display totacre;

The Example2 SSIMPORT list file

17-21

LIBINCLUDE C:\GAMS25\SSIMPORT.GMS
 67 parameter txacre /
INCLUDE C:\GAMS25\225A\GAMSLINK.SCR
 69 * Tuesday, June 30 1998 15:28:18
 70 * C:\GAMS25\IM3.WK1 TXACRE
 71 1971.TXCNTBLACK.CORN 1.63000000000000E+0002
 72 1971.TXCNTBLACK.SORGHUM 9.34000000000000E+0002
 73 1971.TXCNTBLACK.SOYBEANS 9.00000000000000E+0000
 74 1971.TXCNTBLACK.WHEAT 1.24000000000000E+0002
 75 1971.TXEAST.CORN 3.40000000000000E+0001
 76 1971.TXEAST.SORGHUM 6.70000000000000E+0001
 77 1971.TXEAST.SOYBEANS 9.00000000000000E+0000
 78 1971.TXEDPLAT.CORN 2.00000000000000E+0000
 79 1971.TXEDPLAT.SORGHUM 1.06000000000000E+0002
 80 1971.TXEDPLAT.WHEAT 8.00000000000000E+0000
 81 1971.TXHIPLAINS.CORN 2.44000000000000E+0002
 82 1971.TXHIPLAINS.SORGHUM 2.92600000000000E+0003
 83 1971.TXHIPLAINS.SOYBEANS 5.10000000000000E+0001
 84 1971.TXHIPLAINS.WHEAT 1.02900000000000E+0003
 85 1971.TXROLINGPL.SORGHUM 5.21000000000000E+0002
 86 1971.TXROLINGPL.WHEAT 3.17000000000000E+0002
 87 1971.TXSOUTH.CORN 6.40000000000000E+0001
 88 1971.TXSOUTH.SORGHUM 5.80000000000000E+0002
 89 1971.TXSOUTH.SOYBEANS 2.00000000000000E+0000
 90 1971.TXSOUTH.WHEAT 8.00000000000000E+0000
 91 1971.TXTRANSPEC.SORGHUM 8.00000000000000E+0000
 92 1971.TXTRANSPEC.WHEAT 7.00000000000000E+0000
 93 1972.TXCNTBLACK.CORN 1.42000000000000E+0002
 94 1972.TXCNTBLACK.SORGHUM 9.88000000000000E+0002
 95 1972.TXCNTBLACK.SOYBEANS 3.50000000000000E+0001
 96 1972.TXCNTBLACK.WHEAT 1.42000000000000E+0002
 97 1972.TXEAST.CORN 3.00000000000000E+0001
 98 1972.TXEAST.SORGHUM 5.90000000000000E+0001
 99 1972.TXEAST.SOYBEANS 2.90000000000000E+0001
 100 1972.TXEAST.WHEAT 1.00000000000000E+0000
 101 1972.TXEDPLAT.CORN 1.00000000000000E+0000
 102 1972.TXEDPLAT.SORGHUM 1.00000000000000E+0002
 103 1972.TXEDPLAT.WHEAT 2.80000000000000E+0001
 104 1972.TXHIPLAINS.CORN 1.99000000000000E+0002
 105 1972.TXHIPLAINS.SORGHUM 2.48600000000000E+0003
 106 1972.TXHIPLAINS.SOYBEANS 5.80000000000000E+0001
 107 1972.TXHIPLAINS.WHEAT 1.18500000000000E+0003
 108 1972.TXROLINGPL.SORGHUM 5.18000000000000E+0002
 109 1972.TXROLINGPL.WHEAT 6.09000000000000E+0002
 110 1972.TXSOUTH.CORN 4.50000000000000E+0001
 111 1972.TXSOUTH.SORGHUM 6.01000000000000E+0002
 112 1972.TXSOUTH.SOYBEANS 3.00000000000000E+0000
 113 1972.TXSOUTH.WHEAT 2.30000000000000E+0001
 114 1972.TXTRANSPEC.SORGHUM 8.00000000000000E+0000
 115 1972.TXTRANSPEC.WHEAT 8.00000000000000E+0000
 116 1973.TXCNTBLACK.CORN 1.33000000000000E+0002
 117 1973.TXCNTBLACK.SORGHUM 1.26100000000000E+0003
 118 1973.TXCNTBLACK.SOYBEANS 2.90000000000000E+0001
 119 1973.TXCNTBLACK.WHEAT 2.68000000000000E+0002
 120 1973.TXEAST.CORN 2.70000000000000E+0001
 121 1973.TXEAST.SORGHUM 4.30000000000000E+0001
 122 1973.TXEAST.SOYBEANS 5.90000000000000E+0001
 123 1973.TXEAST.WHEAT 4.00000000000000E+0000
 124 1973.TXEDPLAT.SORGHUM 1.37000000000000E+0002
 125 1973.TXEDPLAT.WHEAT 6.40000000000000E+0001
 126 1973.TXHIPLAINS.CORN 3.67000000000000E+0002
 127 1973.TXHIPLAINS.SORGHUM 3.03000000000000E+0003
 128 1973.TXHIPLAINS.SOYBEANS 1.31000000000000E+0002
 129 1973.TXHIPLAINS.WHEAT 2.18600000000000E+0003
 130 1973.TXROLINGPL.SORGHUM 6.45000000000000E+0002
 131 1973.TXROLINGPL.WHEAT 8.17000000000000E+0002

17-22

 132 1973.TXSOUTH.CORN 7.20000000000000E+0001
 133 1973.TXSOUTH.SORGHUM 8.93000000000000E+0002
 134 1973.TXSOUTH.SOYBEANS 7.00000000000000E+0000
 135 1973.TXSOUTH.WHEAT 5.20000000000000E+0001
 136 1973.TXTRANSPEC.SORGHUM 8.00000000000000E+0000
 137 1973.TXTRANSPEC.WHEAT 5.00000000000000E+0000
 138 1974.TXCNTBLACK.CORN 1.25000000000000E+0002
 139 1974.TXCNTBLACK.SORGHUM 1.20700000000000E+0003
 140 1974.TXCNTBLACK.SOYBEANS 2.40000000000000E+0001
 141 1974.TXCNTBLACK.WHEAT 3.93000000000000E+0002
 142 1974.TXEAST.CORN 3.40000000000000E+0001
 143 1974.TXEAST.SORGHUM 7.40000000000000E+0001
 144 1974.TXEAST.SOYBEANS 3.40000000000000E+0001
 145 1974.TXEAST.WHEAT 6.00000000000000E+0000
 146 1974.TXEDPLAT.CORN 1.00000000000000E+0000
 147 1974.TXEDPLAT.SORGHUM 1.31000000000000E+0002
 148 1974.TXEDPLAT.WHEAT 7.20000000000000E+0001
 149 1974.TXHIPLAINS.CORN 5.41000000000000E+0002
 150 1974.TXHIPLAINS.SORGHUM 2.17500000000000E+0003
 151 1974.TXHIPLAINS.SOYBEANS 8.80000000000000E+0001
 152 1974.TXHIPLAINS.WHEAT 1.66500000000000E+0003
 153 1974.TXROLINGPL.CORN 1.00000000000000E+0000
 154 1974.TXROLINGPL.SORGHUM 4.00000000000000E+0002
 155 1974.TXROLINGPL.WHEAT 1.09000000000000E+0003
 156 1974.TXSOUTH.CORN 6.10000000000000E+0001
 157 1974.TXSOUTH.SORGHUM 9.97000000000000E+0002
 158 1974.TXSOUTH.SOYBEANS 4.00000000000000E+0000
 159 1974.TXSOUTH.WHEAT 6.60000000000000E+0001
 160 1974.TXTRANSPEC.SORGHUM 9.00000000000000E+0000
 161 1974.TXTRANSPEC.WHEAT 5.00000000000000E+0000
 162 1975.TXCNTBLACK.CORN 1.39000000000000E+0002
 163 1975.TXCNTBLACK.SORGHUM 1.49800000000000E+0003
 164 1975.TXCNTBLACK.SOYBEANS 4.30000000000000E+0001
 165 1975.TXCNTBLACK.WHEAT 5.19000000000000E+0002
 166 1975.TXEAST.CORN 4.10000000000000E+0001
 167 1975.TXEAST.SORGHUM 6.00000000000000E+0001
 168 1975.TXEAST.SOYBEANS 4.00000000000000E+0001
 169 1975.TXEAST.WHEAT 3.00000000000000E+0000
 170 1975.TXEDPLAT.CORN 2.00000000000000E+0000
 171 1975.TXEDPLAT.SORGHUM 1.38000000000000E+0002
 172 1975.TXEDPLAT.WHEAT 1.54000000000000E+0002
 173 1975.TXHIPLAINS.CORN 7.71000000000000E+0002
 174 1975.TXHIPLAINS.SORGHUM 2.62900000000000E+0003
 175 1975.TXHIPLAINS.SOYBEANS 1.27000000000000E+0002
 176 1975.TXHIPLAINS.WHEAT 3.06000000000000E+0003
 177 1975.TXROLINGPL.SORGHUM 6.17000000000000E+0002
 178 1975.TXROLINGPL.WHEAT 1.84000000000000E+0003
 179 1975.TXSOUTH.CORN 9.10000000000000E+0001
 180 1975.TXSOUTH.SORGHUM 1.17100000000000E+0003
 181 1975.TXSOUTH.SOYBEANS 5.00000000000000E+0000
 182 1975.TXSOUTH.WHEAT 9.20000000000000E+0001
 183 1975.TXTRANSPEC.SORGHUM 2.00000000000000E+0000
 184 1975.TXTRANSPEC.WHEAT 2.60000000000000E+0001
 185 1976.TXCNTBLACK.CORN 1.32000000000000E+0002
 186 1976.TXCNTBLACK.SORGHUM 1.27000000000000E+0003
 187 1976.TXCNTBLACK.SOYBEANS 4.80000000000000E+0001
 188 1976.TXCNTBLACK.WHEAT 6.90000000000000E+0002
 189 1976.TXEAST.CORN 2.10000000000000E+0001
 190 1976.TXEAST.SORGHUM 4.80000000000000E+0001
 191 1976.TXEAST.SOYBEANS 5.30000000000000E+0001
 192 1976.TXEAST.WHEAT 1.70000000000000E+0001
 193 1976.TXEDPLAT.CORN 2.00000000000000E+0000
 194 1976.TXEDPLAT.SORGHUM 1.49000000000000E+0002
 195 1976.TXEDPLAT.WHEAT 7.40000000000000E+0001
 196 1976.TXHIPLAINS.CORN 1.21000000000000E+0003
 197 1976.TXHIPLAINS.SORGHUM 1.89000000000000E+0003
 198 1976.TXHIPLAINS.SOYBEANS 7.50000000000000E+0001

17-23

 199 1976.TXHIPLAINS.WHEAT 2.12500000000000E+0003
 200 1976.TXROLINGPL.CORN 4.00000000000000E+0000
 201 1976.TXROLINGPL.SORGHUM 4.79000000000000E+0002
 202 1976.TXROLINGPL.WHEAT 1.66500000000000E+0003
 203 1976.TXSOUTH.CORN 7.10000000000000E+0001
 204 1976.TXSOUTH.SORGHUM 7.57000000000000E+0002
 205 1976.TXSOUTH.WHEAT 8.10000000000000E+0001
 206 1976.TXTRANSPEC.WHEAT 4.00000000000000E+0001
 207 1977.TXCNTBLACK.CORN 1.65000000000000E+0002
 208 1977.TXCNTBLACK.SORGHUM 1.32800000000000E+0003
 209 1977.TXCNTBLACK.SOYBEANS 7.40000000000000E+0001
 210 1977.TXCNTBLACK.WHEAT 5.55000000000000E+0002
 211 1977.TXEAST.CORN 3.70000000000000E+0001
 212 1977.TXEAST.SORGHUM 3.00000000000000E+0001
 213 1977.TXEAST.SOYBEANS 1.03000000000000E+0002
 214 1977.TXEAST.WHEAT 1.90000000000000E+0001
 215 1977.TXEDPLAT.CORN 5.00000000000000E+0000
 216 1977.TXEDPLAT.SORGHUM 1.21000000000000E+0002
 217 1977.TXEDPLAT.WHEAT 1.24000000000000E+0002
 218 1977.TXHIPLAINS.CORN 1.21100000000000E+0003
 219 1977.TXHIPLAINS.SORGHUM 1.32000000000000E+0003
 220 1977.TXHIPLAINS.SOYBEANS 1.52000000000000E+0002
 221 1977.TXHIPLAINS.WHEAT 2.33700000000000E+0003
 222 1977.TXROLINGPL.CORN 3.00000000000000E+0000
 223 1977.TXROLINGPL.SORGHUM 3.35000000000000E+0002
 224 1977.TXROLINGPL.WHEAT 1.58000000000000E+0003
 225 1977.TXSOUTH.CORN 1.19000000000000E+0002
 226 1977.TXSOUTH.SORGHUM 6.66000000000000E+0002
 227 1977.TXSOUTH.SOYBEANS 8.00000000000000E+0000
 228 1977.TXSOUTH.WHEAT 6.20000000000000E+0001
 229 1977.TXTRANSPEC.SORGHUM 8.00000000000000E+0000
 230 1977.TXTRANSPEC.WHEAT 1.90000000000000E+0001
 231 1978.TXCNTBLACK.CORN 1.99000000000000E+0002
 232 1978.TXCNTBLACK.SORGHUM 1.35100000000000E+0003
 233 1978.TXCNTBLACK.SOYBEANS 5.10000000000000E+0001
 234 1978.TXCNTBLACK.WHEAT 4.74000000000000E+0002
 235 1978.TXEAST.CORN 3.30000000000000E+0001
 236 1978.TXEAST.SORGHUM 3.10000000000000E+0001
 237 1978.TXEAST.SOYBEANS 1.03000000000000E+0002
 238 1978.TXEAST.WHEAT 1.80000000000000E+0001
 239 1978.TXEDPLAT.CORN 3.00000000000000E+0000
 240 1978.TXEDPLAT.SORGHUM 8.80000000000000E+0001
 241 1978.TXEDPLAT.WHEAT 4.60000000000000E+0001
 242 1978.TXHIPLAINS.CORN 9.07000000000000E+0002
 243 1978.TXHIPLAINS.SORGHUM 1.37000000000000E+0003
 244 1978.TXHIPLAINS.SOYBEANS 1.88000000000000E+0002
 245 1978.TXHIPLAINS.WHEAT 1.28500000000000E+0003
 246 1978.TXROLINGPL.CORN 2.00000000000000E+0000
 247 1978.TXROLINGPL.SORGHUM 2.80000000000000E+0002
 248 1978.TXROLINGPL.WHEAT 8.34000000000000E+0002
 249 1978.TXSOUTH.CORN 1.44000000000000E+0002
 250 1978.TXSOUTH.SORGHUM 6.40000000000000E+0002
 251 1978.TXSOUTH.SOYBEANS 6.00000000000000E+0000
 252 1978.TXSOUTH.WHEAT 3.30000000000000E+0001
 253 1978.TXTRANSPEC.SORGHUM 8.00000000000000E+0000
 254 1978.TXTRANSPEC.WHEAT 5.00000000000000E+0000
 255 1979.TXCNTBLACK.CORN 2.09000000000000E+0002
 256 1979.TXCNTBLACK.SORGHUM 1.18800000000000E+0003
 257 1979.TXCNTBLACK.SOYBEANS 6.90000000000000E+0001
 258 1979.TXCNTBLACK.WHEAT 6.20000000000000E+0002
 259 1979.TXEAST.CORN 3.70000000000000E+0001
 260 1979.TXEAST.SORGHUM 2.40000000000000E+0001
 261 1979.TXEAST.SOYBEANS 1.10000000000000E+0002
 262 1979.TXEAST.WHEAT 1.70000000000000E+0001
 263 1979.TXEDPLAT.CORN 3.00000000000000E+0000
 264 1979.TXEDPLAT.SORGHUM 1.21000000000000E+0002
 265 1979.TXEDPLAT.WHEAT 1.15000000000000E+0002

17-24

 266 1979.TXHIPLAINS.CORN 7.00000000000000E+0002
 267 1979.TXHIPLAINS.SORGHUM 1.23000000000000E+0003
 268 1979.TXHIPLAINS.SOYBEANS 2.17000000000000E+0002
 269 1979.TXHIPLAINS.WHEAT 2.39300000000000E+0003
 270 1979.TXROLINGPL.CORN 3.00000000000000E+0000
 271 1979.TXROLINGPL.SORGHUM 2.90000000000000E+0002
 272 1979.TXROLINGPL.WHEAT 1.37000000000000E+0003
 273 1979.TXSOUTH.CORN 1.73000000000000E+0002
 274 1979.TXSOUTH.SORGHUM 7.31000000000000E+0002
 275 1979.TXSOUTH.SOYBEANS 1.60000000000000E+0001
 276 1979.TXSOUTH.WHEAT 7.20000000000000E+0001
 277 1979.TXTRANSPEC.SORGHUM 8.00000000000000E+0000
 278 1979.TXTRANSPEC.WHEAT 5.00000000000000E+0000
 279 1980.TXCNTBLACK.CORN 2.26000000000000E+0002
 280 1980.TXCNTBLACK.SORGHUM 9.83000000000000E+0002
 281 1980.TXCNTBLACK.SOYBEANS 3.70000000000000E+0001
 282 1980.TXCNTBLACK.WHEAT 1.11600000000000E+0003
 283 1980.TXEAST.CORN 2.80000000000000E+0001
 284 1980.TXEAST.SORGHUM 2.70000000000000E+0001
 285 1980.TXEAST.SOYBEANS 1.22000000000000E+0002
 286 1980.TXEAST.WHEAT 6.20000000000000E+0001
 287 1980.TXEDPLAT.CORN 2.00000000000000E+0000
 288 1980.TXEDPLAT.SORGHUM 7.90000000000000E+0001
 289 1980.TXEDPLAT.WHEAT 8.50000000000000E+0001
 290 1980.TXHIPLAINS.CORN 7.35000000000000E+0002
 291 1980.TXHIPLAINS.SORGHUM 1.13700000000000E+0003
 292 1980.TXHIPLAINS.SOYBEANS 6.50000000000000E+0001
 293 1980.TXHIPLAINS.WHEAT 2.59500000000000E+0003
 294 1980.TXROLINGPL.CORN 3.00000000000000E+0000
 295 1980.TXROLINGPL.SORGHUM 1.68000000000000E+0002
 296 1980.TXROLINGPL.WHEAT 1.25500000000000E+0003
 297 1980.TXSOUTH.CORN 1.54000000000000E+0002
 298 1980.TXSOUTH.SORGHUM 6.26000000000000E+0002
 299 1980.TXSOUTH.SOYBEANS 5.00000000000000E+0000
 300 1980.TXSOUTH.WHEAT 4.60000000000000E+0001
 301 1980.TXTRANSPEC.WHEAT 2.30000000000000E+0001
 302 1981.TXCNTBLACK.CORN 2.12000000000000E+0002
 303 1981.TXCNTBLACK.SORGHUM 8.94000000000000E+0002
 304 1981.TXCNTBLACK.SOYBEANS 2.20000000000000E+0001
 305 1981.TXCNTBLACK.WHEAT 1.51100000000000E+0003
 306 1981.TXEAST.CORN 3.10000000000000E+0001
 307 1981.TXEAST.SORGHUM 4.10000000000000E+0001
 308 1981.TXEAST.SOYBEANS 7.30000000000000E+0001
 309 1981.TXEAST.WHEAT 1.42000000000000E+0002
 310 1981.TXEDPLAT.CORN 1.00000000000000E+0000
 311 1981.TXEDPLAT.SORGHUM 8.80000000000000E+0001
 312 1981.TXEDPLAT.WHEAT 1.45000000000000E+0002
 313 1981.TXHIPLAINS.CORN 5.22000000000000E+0002
 314 1981.TXHIPLAINS.SORGHUM 1.23900000000000E+0003
 315 1981.TXHIPLAINS.SOYBEANS 5.80000000000000E+0001
 316 1981.TXHIPLAINS.WHEAT 2.75000000000000E+0003
 317 1981.TXROLINGPL.CORN 1.00000000000000E+0000
 318 1981.TXROLINGPL.SORGHUM 1.95000000000000E+0002
 319 1981.TXROLINGPL.WHEAT 1.86400000000000E+0003
 320 1981.TXSOUTH.CORN 1.87000000000000E+0002
 321 1981.TXSOUTH.SORGHUM 8.22000000000000E+0002
 322 1981.TXSOUTH.WHEAT 8.70000000000000E+0001
 323 1981.TXTRANSPEC.SORGHUM 9.00000000000000E+0000
 324 1981.TXTRANSPEC.WHEAT 3.80000000000000E+0001
 325 1982.TXCNTBLACK.CORN 2.37000000000000E+0002
 326 1982.TXCNTBLACK.SORGHUM 1.06200000000000E+0003
 327 1982.TXCNTBLACK.SOYBEANS 5.50000000000000E+0001
 328 1982.TXCNTBLACK.WHEAT 1.43700000000000E+0003
 329 1982.TXEAST.CORN 2.50000000000000E+0001
 330 1982.TXEAST.SORGHUM 4.40000000000000E+0001
 331 1982.TXEAST.SOYBEANS 5.80000000000000E+0001
 332 1982.TXEAST.WHEAT 1.02000000000000E+0002

17-25

 333 1982.TXEDPLAT.CORN 2.00000000000000E+0000
 334 1982.TXEDPLAT.SORGHUM 1.09000000000000E+0002
 335 1982.TXEDPLAT.WHEAT 1.78000000000000E+0002
 336 1982.TXHIPLAINS.CORN 5.23000000000000E+0002
 337 1982.TXHIPLAINS.SORGHUM 2.18000000000000E+0003
 338 1982.TXHIPLAINS.SOYBEANS 4.45000000000000E+0002
 339 1982.TXHIPLAINS.WHEAT 2.52000000000000E+0003
 340 1982.TXROLINGPL.CORN 2.00000000000000E+0000
 341 1982.TXROLINGPL.SORGHUM 3.57000000000000E+0002
 342 1982.TXROLINGPL.WHEAT 1.60500000000000E+0003
 343 1982.TXSOUTH.CORN 1.67000000000000E+0002
 344 1982.TXSOUTH.SORGHUM 6.82000000000000E+0002
 345 1982.TXSOUTH.SOYBEANS 2.00000000000000E+0000
 346 1982.TXSOUTH.WHEAT 1.08000000000000E+0002
 347 1982.TXTRANSPEC.SORGHUM 2.00000000000000E+0000
 348 1982.TXTRANSPEC.WHEAT 1.80000000000000E+0001
 349 1983.TXCNTBLACK.CORN 2.66000000000000E+0002
 350 1983.TXCNTBLACK.SORGHUM 6.57000000000000E+0002
 351 1983.TXCNTBLACK.SOYBEANS 4.90000000000000E+0001
 352 1983.TXCNTBLACK.WHEAT 1.06900000000000E+0003
 353 1983.TXEAST.CORN 2.30000000000000E+0001
 354 1983.TXEAST.SORGHUM 3.00000000000000E+0001
 355 1983.TXEAST.SOYBEANS 3.40000000000000E+0001
 356 1983.TXEAST.WHEAT 8.40000000000000E+0001
 357 1983.TXEDPLAT.CORN 1.00000000000000E+0000
 358 1983.TXEDPLAT.SORGHUM 8.90000000000000E+0001
 359 1983.TXEDPLAT.WHEAT 9.70000000000000E+0001
 360 1983.TXHIPLAINS.CORN 4.00000000000000E+0002
 361 1983.TXHIPLAINS.SORGHUM 9.40000000000000E+0002
 362 1983.TXHIPLAINS.SOYBEANS 1.08000000000000E+0002
 363 1983.TXHIPLAINS.WHEAT 1.98500000000000E+0003
 364 1983.TXROLINGPL.CORN 1.00000000000000E+0000
 365 1983.TXROLINGPL.SORGHUM 2.37000000000000E+0002
 366 1983.TXROLINGPL.WHEAT 1.27500000000000E+0003
 367 1983.TXSOUTH.CORN 2.03000000000000E+0002
 368 1983.TXSOUTH.SORGHUM 5.89000000000000E+0002
 369 1983.TXSOUTH.WHEAT 5.10000000000000E+0001
 370 1983.TXTRANSPEC.WHEAT 1.50000000000000E+0001
 371 1984.TXCNTBLACK.CORN 4.15000000000000E+0002
 372 1984.TXCNTBLACK.SORGHUM 8.62000000000000E+0002
 373 1984.TXCNTBLACK.SOYBEANS 3.20000000000000E+0001
 374 1984.TXCNTBLACK.WHEAT 1.17200000000000E+0003
 375 1984.TXEAST.CORN 3.50000000000000E+0001
 376 1984.TXEAST.SORGHUM 2.60000000000000E+0001
 377 1984.TXEAST.SOYBEANS 4.40000000000000E+0001
 378 1984.TXEAST.WHEAT 6.60000000000000E+0001
 379 1984.TXEDPLAT.CORN 1.00000000000000E+0000
 380 1984.TXEDPLAT.SORGHUM 7.20000000000000E+0001
 381 1984.TXEDPLAT.WHEAT 9.00000000000000E+0001
 382 1984.TXHIPLAINS.CORN 5.32000000000000E+0002
 383 1984.TXHIPLAINS.SORGHUM 1.29500000000000E+0003
 384 1984.TXHIPLAINS.SOYBEANS 4.00000000000000E+0001
 385 1984.TXHIPLAINS.WHEAT 2.33000000000000E+0003
 386 1984.TXROLINGPL.CORN 3.00000000000000E+0000
 387 1984.TXROLINGPL.SORGHUM 1.74000000000000E+0002
 388 1984.TXROLINGPL.WHEAT 1.26000000000000E+0003
 389 1984.TXSOUTH.CORN 2.20000000000000E+0002
 390 1984.TXSOUTH.SORGHUM 6.09000000000000E+0002
 391 1984.TXSOUTH.WHEAT 4.50000000000000E+0001
 392 1984.TXTRANSPEC.SORGHUM 8.00000000000000E+0000
 393 1984.TXTRANSPEC.WHEAT 1.00000000000000E+0001
 394 1985.TXCNTBLACK.CORN 3.61000000000000E+0002
 395 1985.TXCNTBLACK.SORGHUM 8.61000000000000E+0002
 396 1985.TXCNTBLACK.SOYBEANS 1.70000000000000E+0001
 397 1985.TXCNTBLACK.WHEAT 1.17500000000000E+0003
 398 1985.TXEAST.CORN 4.30000000000000E+0001
 399 1985.TXEAST.SORGHUM 2.50000000000000E+0001

17-26

 400 1985.TXEAST.SOYBEANS 2.00000000000000E+0001
 401 1985.TXEAST.WHEAT 1.29000000000000E+0002
 402 1985.TXEDPLAT.CORN 2.80000000000000E+0001
 403 1985.TXEDPLAT.SORGHUM 8.70000000000000E+0001
 404 1985.TXEDPLAT.SOYBEANS 1.00000000000000E+0000
 405 1985.TXEDPLAT.WHEAT 1.28000000000000E+0002
 406 1985.TXHIPLAINS.CORN 5.17000000000000E+0002
 407 1985.TXHIPLAINS.SORGHUM 1.56700000000000E+0003
 408 1985.TXHIPLAINS.SOYBEANS 7.50000000000000E+0001
 409 1985.TXHIPLAINS.WHEAT 2.62000000000000E+0003
 410 1985.TXROLINGPL.CORN 6.00000000000000E+0000
 411 1985.TXROLINGPL.SORGHUM 2.87000000000000E+0002
 412 1985.TXROLINGPL.WHEAT 1.68000000000000E+0003
 413 1985.TXSOUTH.CORN 2.16000000000000E+0002
 414 1985.TXSOUTH.SORGHUM 5.91000000000000E+0002
 415 1985.TXSOUTH.WHEAT 9.30000000000000E+0001
 416 1985.TXTRANSPEC.SORGHUM 8.00000000000000E+0000
 417 1985.TXTRANSPEC.WHEAT 6.00000000000000E+0000
 418 1986.TXCNTBLACK.CORN 4.03000000000000E+0002
 419 1986.TXCNTBLACK.SORGHUM 7.64000000000000E+0002
 420 1986.TXCNTBLACK.SOYBEANS 2.60000000000000E+0001
 421 1986.TXCNTBLACK.WHEAT 8.45000000000000E+0002
 422 1986.TXEAST.CORN 5.60000000000000E+0001
 423 1986.TXEAST.SORGHUM 5.10000000000000E+0001
 424 1986.TXEAST.SOYBEANS 3.20000000000000E+0001
 425 1986.TXEAST.WHEAT 4.00000000000000E+0001
 426 1986.TXEDPLAT.CORN 6.00000000000000E+0000
 427 1986.TXEDPLAT.SORGHUM 7.90000000000000E+0001
 428 1986.TXEDPLAT.WHEAT 8.20000000000000E+0001
 429 1986.TXHIPLAINS.CORN 4.67000000000000E+0002
 430 1986.TXHIPLAINS.SORGHUM 1.46800000000000E+0003
 431 1986.TXHIPLAINS.SOYBEANS 5.60000000000000E+0001
 432 1986.TXHIPLAINS.WHEAT 2.34000000000000E+0003
 433 1986.TXROLINGPL.CORN 5.00000000000000E+0000
 434 1986.TXROLINGPL.SORGHUM 2.49000000000000E+0002
 435 1986.TXROLINGPL.WHEAT 1.40000000000000E+0003
 436 1986.TXSOUTH.CORN 1.63000000000000E+0002
 437 1986.TXSOUTH.SORGHUM 4.76000000000000E+0002
 438 1986.TXSOUTH.WHEAT 6.70000000000000E+0001
 439 1986.TXTRANSPEC.SORGHUM 8.00000000000000E+0000
 440 1986.TXTRANSPEC.WHEAT 7.00000000000000E+0000
 441 1987.TXCNTBLACK.CORN 3.83000000000000E+0002
 442 1987.TXCNTBLACK.SORGHUM 6.07000000000000E+0002
 443 1987.TXCNTBLACK.SOYBEANS 3.10000000000000E+0001
 444 1987.TXCNTBLACK.WHEAT 5.52000000000000E+0002
 445 1987.TXEAST.CORN 3.00000000000000E+0001
 446 1987.TXEAST.SORGHUM 3.60000000000000E+0001
 447 1987.TXEAST.SOYBEANS 2.10000000000000E+0001
 448 1987.TXEAST.WHEAT 4.30000000000000E+0001
 449 1987.TXEDPLAT.CORN 3.00000000000000E+0000
 450 1987.TXEDPLAT.SORGHUM 6.80000000000000E+0001
 451 1987.TXEDPLAT.WHEAT 8.70000000000000E+0001
 452 1987.TXHIPLAINS.CORN 4.12000000000000E+0002
 453 1987.TXHIPLAINS.SORGHUM 8.95000000000000E+0002
 454 1987.TXHIPLAINS.SOYBEANS 4.00000000000000E+0001
 455 1987.TXHIPLAINS.WHEAT 1.73000000000000E+0003
 456 1987.TXROLINGPL.CORN 3.00000000000000E+0000
 457 1987.TXROLINGPL.SORGHUM 1.91000000000000E+0002
 458 1987.TXROLINGPL.WHEAT 1.11300000000000E+0003
 459 1987.TXSOUTH.CORN 1.70000000000000E+0002
 460 1987.TXSOUTH.SORGHUM 3.61000000000000E+0002
 461 1987.TXSOUTH.WHEAT 6.30000000000000E+0001
 462 1987.TXTRANSPEC.SORGHUM 8.00000000000000E+0000
 463 1987.TXTRANSPEC.WHEAT 3.00000000000000E+0000
 464 1988.TXCNTBLACK.CORN 3.92000000000000E+0002
 465 1988.TXCNTBLACK.SORGHUM 4.99000000000000E+0002
 466 1988.TXCNTBLACK.SOYBEANS 2.50000000000000E+0001

17-27

 467 1988.TXCNTBLACK.WHEAT 6.29000000000000E+0002
 468 1988.TXEAST.CORN 3.60000000000000E+0001
 469 1988.TXEAST.SORGHUM 2.10000000000000E+0001
 470 1988.TXEAST.SOYBEANS 3.10000000000000E+0001
 471 1988.TXEAST.WHEAT 4.50000000000000E+0001
 472 1988.TXEDPLAT.CORN 3.00000000000000E+0000
 473 1988.TXEDPLAT.SORGHUM 5.60000000000000E+0001
 474 1988.TXEDPLAT.WHEAT 5.80000000000000E+0001
 475 1988.TXHIPLAINS.CORN 4.23000000000000E+0002
 476 1988.TXHIPLAINS.SORGHUM 6.68000000000000E+0002
 477 1988.TXHIPLAINS.SOYBEANS 6.10000000000000E+0001
 478 1988.TXHIPLAINS.WHEAT 1.47200000000000E+0003
 479 1988.TXROLINGPL.CORN 3.00000000000000E+0000
 480 1988.TXROLINGPL.SORGHUM 1.23000000000000E+0002
 481 1988.TXROLINGPL.WHEAT 9.30000000000000E+0002
 482 1988.TXSOUTH.CORN 2.22000000000000E+0002
 483 1988.TXSOUTH.SORGHUM 2.82000000000000E+0002
 484 1988.TXSOUTH.WHEAT 5.40000000000000E+0001
 485 1988.TXTRANSPEC.SORGHUM 9.00000000000000E+0000
 486 1988.TXTRANSPEC.WHEAT 3.00000000000000E+0000
 487 1989.TXCNTBLACK.CORN 3.69000000000000E+0002
 488 1989.TXCNTBLACK.SORGHUM 6.43000000000000E+0002
 489 1989.TXCNTBLACK.SOYBEANS 4.90000000000000E+0001
 490 1989.TXCNTBLACK.WHEAT 7.74000000000000E+0002
 491 1989.TXEAST.CORN 3.60000000000000E+0001
 492 1989.TXEAST.SORGHUM 3.00000000000000E+0001
 493 1989.TXEAST.SOYBEANS 4.20000000000000E+0001
 494 1989.TXEAST.WHEAT 5.50000000000000E+0001
 495 1989.TXEDPLAT.CORN 3.00000000000000E+0000
 496 1989.TXEDPLAT.SORGHUM 6.30000000000000E+0001
 497 1989.TXEDPLAT.WHEAT 1.21000000000000E+0002
 498 1989.TXHIPLAINS.CORN 5.92000000000000E+0002
 499 1989.TXHIPLAINS.SORGHUM 1.20800000000000E+0003
 500 1989.TXHIPLAINS.SOYBEANS 1.78000000000000E+0002
 501 1989.TXHIPLAINS.WHEAT 7.48000000000000E+0002
 502 1989.TXROLINGPL.CORN 3.00000000000000E+0000
 503 1989.TXROLINGPL.SORGHUM 1.32000000000000E+0002
 504 1989.TXROLINGPL.WHEAT 1.22500000000000E+0003
 505 1989.TXSOUTH.CORN 1.82000000000000E+0002
 506 1989.TXSOUTH.SORGHUM 3.08000000000000E+0002
 507 1989.TXSOUTH.SOYBEANS 5.00000000000000E+0000
 508 1989.TXSOUTH.WHEAT 6.60000000000000E+0001
 509 1989.TXTRANSPEC.SORGHUM 2.00000000000000E+0000
 510 1989.TXTRANSPEC.WHEAT 2.00000000000000E+0000
 511 1990.TXCNTBLACK.CORN 3.63000000000000E+0002
 512 1990.TXCNTBLACK.SORGHUM 6.45000000000000E+0002
 513 1990.TXCNTBLACK.SOYBEANS 4.40000000000000E+0001
 514 1990.TXCNTBLACK.WHEAT 8.33000000000000E+0002
 515 1990.TXEAST.CORN 3.40000000000000E+0001
 516 1990.TXEAST.SORGHUM 2.30000000000000E+0001
 517 1990.TXEAST.SOYBEANS 3.40000000000000E+0001
 518 1990.TXEAST.WHEAT 5.30000000000000E+0001
 519 1990.TXEDPLAT.CORN 3.00000000000000E+0000
 520 1990.TXEDPLAT.SORGHUM 6.30000000000000E+0001
 521 1990.TXEDPLAT.WHEAT 1.27000000000000E+0002
 522 1990.TXHIPLAINS.CORN 6.21000000000000E+0002
 523 1990.TXHIPLAINS.SORGHUM 6.62000000000000E+0002
 524 1990.TXHIPLAINS.SOYBEANS 2.80000000000000E+0001
 525 1990.TXHIPLAINS.WHEAT 1.73600000000000E+0003
 526 1990.TXROLINGPL.CORN 7.00000000000000E+0000
 527 1990.TXROLINGPL.SORGHUM 1.26000000000000E+0002
 528 1990.TXROLINGPL.WHEAT 1.35400000000000E+0003
 529 1990.TXSOUTH.CORN 2.30000000000000E+0002
 530 1990.TXSOUTH.SORGHUM 3.67000000000000E+0002
 531 1990.TXSOUTH.SOYBEANS 2.00000000000000E+0000
 532 1990.TXSOUTH.WHEAT 8.30000000000000E+0001
 533 1991.TXCNTBLACK.CORN 3.75000000000000E+0002

17-28

 534 1991.TXCNTBLACK.SORGHUM 7.20000000000000E+0002
 535 1991.TXCNTBLACK.SOYBEANS 3.80000000000000E+0001
 536 1991.TXCNTBLACK.WHEAT 5.56000000000000E+0002
 537 1991.TXEAST.CORN 3.50000000000000E+0001
 538 1991.TXEAST.SORGHUM 2.60000000000000E+0001
 539 1991.TXEAST.SOYBEANS 2.90000000000000E+0001
 540 1991.TXEAST.WHEAT 3.50000000000000E+0001
 541 1991.TXEDPLAT.CORN 3.00000000000000E+0000
 542 1991.TXEDPLAT.SORGHUM 7.00000000000000E+0001
 543 1991.TXEDPLAT.WHEAT 8.50000000000000E+0001
 544 1991.TXHIPLAINS.CORN 6.42000000000000E+0002
 545 1991.TXHIPLAINS.SORGHUM 7.38000000000000E+0002
 546 1991.TXHIPLAINS.SOYBEANS 2.40000000000000E+0001
 547 1991.TXHIPLAINS.WHEAT 1.15700000000000E+0003
 548 1991.TXROLINGPL.CORN 7.00000000000000E+0000
 549 1991.TXROLINGPL.SORGHUM 1.41000000000000E+0002
 550 1991.TXROLINGPL.WHEAT 9.03000000000000E+0002
 551 1991.TXSOUTH.CORN 2.38000000000000E+0002
 552 1991.TXSOUTH.SORGHUM 4.09000000000000E+0002
 553 1991.TXSOUTH.SOYBEANS 2.00000000000000E+0000
 554 1991.TXSOUTH.WHEAT 5.60000000000000E+0001
 555 1991.TXTRANSPEC.SORGHUM 1.00000000000000E+0000
 556 1992.TXCNTBLACK.CORN 4.05000000000000E+0002
 557 1992.TXCNTBLACK.SORGHUM 1.11700000000000E+0003
 558 1992.TXCNTBLACK.SOYBEANS 8.70000000000000E+0001
 559 1992.TXCNTBLACK.WHEAT 7.54000000000000E+0002
 560 1992.TXEAST.CORN 3.80000000000000E+0001
 561 1992.TXEAST.SORGHUM 4.00000000000000E+0001
 562 1992.TXEAST.SOYBEANS 6.60000000000000E+0001
 563 1992.TXEAST.WHEAT 4.80000000000000E+0001
 564 1992.TXEDPLAT.CORN 3.00000000000000E+0000
 565 1992.TXEDPLAT.SORGHUM 1.09000000000000E+0002
 566 1992.TXEDPLAT.SOYBEANS 2.00000000000000E+0000
 567 1992.TXEDPLAT.WHEAT 1.15000000000000E+0002
 568 1992.TXHIPLAINS.CORN 6.94000000000000E+0002
 569 1992.TXHIPLAINS.SORGHUM 1.14600000000000E+0003
 570 1992.TXHIPLAINS.SOYBEANS 5.60000000000000E+0001
 571 1992.TXHIPLAINS.WHEAT 1.57100000000000E+0003
 572 1992.TXROLINGPL.CORN 8.00000000000000E+0000
 573 1992.TXROLINGPL.SORGHUM 2.18000000000000E+0002
 574 1992.TXROLINGPL.WHEAT 1.22500000000000E+0003
 575 1992.TXSOUTH.CORN 2.57000000000000E+0002
 576 1992.TXSOUTH.SORGHUM 6.35000000000000E+0002
 577 1992.TXSOUTH.SOYBEANS 4.00000000000000E+0000
 578 1992.TXSOUTH.WHEAT 7.60000000000000E+0001
 579 1992.TXTRANSPEC.SORGHUM 2.00000000000000E+0000
 580 /;
 581 option txacre:0:2:1;display txacre;
 582
 583 parameter subacre(year,subreg) Texas subreg acres;
 584

LIBINCLUDE C:\GAMS25\SSIMPORT.GMS
 635 parameter subacre /
INCLUDE C:\GAMS25\225A\GAMSLINK.SCR
 637 * Tuesday, June 30 1998 15:28:19
 638 * C:\GAMS25\IM2.WK1 SUBACRE
 639 1971.TXCNTBLACK 1.23000000000000E+0003
 640 1971.TXEAST 1.10000000000000E+0002
 641 1971.TXEDPLAT 1.16000000000000E+0002
 642 1971.TXHIPLAINS 4.25000000000000E+0003
 643 1971.TXROLINGPL 8.38000000000000E+0002
 644 1971.TXSOUTH 6.54000000000000E+0002
 645 1971.TXTRANSPEC 1.50000000000000E+0001
 646 1972.TXCNTBLACK 1.30700000000000E+0003
 647 1972.TXEAST 1.19000000000000E+0002

17-29

 648 1972.TXEDPLAT 1.29000000000000E+0002
 649 1972.TXHIPLAINS 3.92800000000000E+0003
 650 1972.TXROLINGPL 1.12700000000000E+0003
 651 1972.TXSOUTH 6.72000000000000E+0002
 652 1972.TXTRANSPEC 1.60000000000000E+0001
 653 1973.TXCNTBLACK 1.69100000000000E+0003
 654 1973.TXEAST 1.33000000000000E+0002
 655 1973.TXEDPLAT 2.01000000000000E+0002
 656 1973.TXHIPLAINS 5.71400000000000E+0003
 657 1973.TXROLINGPL 1.46200000000000E+0003
 658 1973.TXSOUTH 1.02400000000000E+0003
 659 1973.TXTRANSPEC 1.30000000000000E+0001
 660 1974.TXCNTBLACK 1.74900000000000E+0003
 661 1974.TXEAST 1.48000000000000E+0002
 662 1974.TXEDPLAT 2.04000000000000E+0002
 663 1974.TXHIPLAINS 4.46900000000000E+0003
 664 1974.TXROLINGPL 1.49100000000000E+0003
 665 1974.TXSOUTH 1.12800000000000E+0003
 666 1974.TXTRANSPEC 1.40000000000000E+0001
 667 1975.TXCNTBLACK 2.19900000000000E+0003
 668 1975.TXEAST 1.44000000000000E+0002
 669 1975.TXEDPLAT 2.94000000000000E+0002
 670 1975.TXHIPLAINS 6.58700000000000E+0003
 671 1975.TXROLINGPL 2.45700000000000E+0003
 672 1975.TXSOUTH 1.35900000000000E+0003
 673 1975.TXTRANSPEC 2.80000000000000E+0001
 674 1976.TXCNTBLACK 2.14000000000000E+0003
 675 1976.TXEAST 1.39000000000000E+0002
 676 1976.TXEDPLAT 2.25000000000000E+0002
 677 1976.TXHIPLAINS 5.30000000000000E+0003
 678 1976.TXROLINGPL 2.14800000000000E+0003
 679 1976.TXSOUTH 9.09000000000000E+0002
 680 1976.TXTRANSPEC 4.00000000000000E+0001
 681 1977.TXCNTBLACK 2.12200000000000E+0003
 682 1977.TXEAST 1.89000000000000E+0002
 683 1977.TXEDPLAT 2.50000000000000E+0002
 684 1977.TXHIPLAINS 5.02000000000000E+0003
 685 1977.TXROLINGPL 1.91800000000000E+0003
 686 1977.TXSOUTH 8.55000000000000E+0002
 687 1977.TXTRANSPEC 2.70000000000000E+0001
 688 1978.TXCNTBLACK 2.07500000000000E+0003
 689 1978.TXEAST 1.85000000000000E+0002
 690 1978.TXEDPLAT 1.37000000000000E+0002
 691 1978.TXHIPLAINS 3.75000000000000E+0003
 692 1978.TXROLINGPL 1.11600000000000E+0003
 693 1978.TXSOUTH 8.23000000000000E+0002
 694 1978.TXTRANSPEC 1.30000000000000E+0001
 695 1979.TXCNTBLACK 2.08600000000000E+0003
 696 1979.TXEAST 1.88000000000000E+0002
 697 1979.TXEDPLAT 2.39000000000000E+0002
 698 1979.TXHIPLAINS 4.54000000000000E+0003
 699 1979.TXROLINGPL 1.66300000000000E+0003
 700 1979.TXSOUTH 9.92000000000000E+0002
 701 1979.TXTRANSPEC 1.30000000000000E+0001
 702 1980.TXCNTBLACK 2.36200000000000E+0003
 703 1980.TXEAST 2.39000000000000E+0002
 704 1980.TXEDPLAT 1.66000000000000E+0002
 705 1980.TXHIPLAINS 4.53200000000000E+0003
 706 1980.TXROLINGPL 1.42600000000000E+0003
 707 1980.TXSOUTH 8.31000000000000E+0002
 708 1980.TXTRANSPEC 2.30000000000000E+0001
 709 1981.TXCNTBLACK 2.63900000000000E+0003
 710 1981.TXEAST 2.87000000000000E+0002
 711 1981.TXEDPLAT 2.34000000000000E+0002
 712 1981.TXHIPLAINS 4.56900000000000E+0003
 713 1981.TXROLINGPL 2.06000000000000E+0003
 714 1981.TXSOUTH 1.09600000000000E+0003

17-30

 715 1981.TXTRANSPEC 4.70000000000000E+0001
 716 1982.TXCNTBLACK 2.79100000000000E+0003
 717 1982.TXEAST 2.29000000000000E+0002
 718 1982.TXEDPLAT 2.89000000000000E+0002
 719 1982.TXHIPLAINS 5.66800000000000E+0003
 720 1982.TXROLINGPL 1.96400000000000E+0003
 721 1982.TXSOUTH 9.59000000000000E+0002
 722 1982.TXTRANSPEC 2.00000000000000E+0001
 723 1983.TXCNTBLACK 2.04100000000000E+0003
 724 1983.TXEAST 1.71000000000000E+0002
 725 1983.TXEDPLAT 1.87000000000000E+0002
 726 1983.TXHIPLAINS 3.43300000000000E+0003
 727 1983.TXROLINGPL 1.51300000000000E+0003
 728 1983.TXSOUTH 8.43000000000000E+0002
 729 1983.TXTRANSPEC 1.50000000000000E+0001
 730 1984.TXCNTBLACK 2.48100000000000E+0003
 731 1984.TXEAST 1.71000000000000E+0002
 732 1984.TXEDPLAT 1.63000000000000E+0002
 733 1984.TXHIPLAINS 4.19700000000000E+0003
 734 1984.TXROLINGPL 1.43700000000000E+0003
 735 1984.TXSOUTH 8.74000000000000E+0002
 736 1984.TXTRANSPEC 1.80000000000000E+0001
 737 1985.TXCNTBLACK 2.41400000000000E+0003
 738 1985.TXEAST 2.17000000000000E+0002
 739 1985.TXEDPLAT 2.44000000000000E+0002
 740 1985.TXHIPLAINS 4.77900000000000E+0003
 741 1985.TXROLINGPL 1.97300000000000E+0003
 742 1985.TXSOUTH 9.00000000000000E+0002
 743 1985.TXTRANSPEC 1.40000000000000E+0001
 744 1986.TXCNTBLACK 2.03800000000000E+0003
 745 1986.TXEAST 1.79000000000000E+0002
 746 1986.TXEDPLAT 1.67000000000000E+0002
 747 1986.TXHIPLAINS 4.33100000000000E+0003
 748 1986.TXROLINGPL 1.65400000000000E+0003
 749 1986.TXSOUTH 7.06000000000000E+0002
 750 1986.TXTRANSPEC 1.50000000000000E+0001
 751 1987.TXCNTBLACK 1.57300000000000E+0003
 752 1987.TXEAST 1.30000000000000E+0002
 753 1987.TXEDPLAT 1.58000000000000E+0002
 754 1987.TXHIPLAINS 3.07700000000000E+0003
 755 1987.TXROLINGPL 1.30700000000000E+0003
 756 1987.TXSOUTH 5.94000000000000E+0002
 757 1987.TXTRANSPEC 1.10000000000000E+0001
 758 1988.TXCNTBLACK 1.54500000000000E+0003
 759 1988.TXEAST 1.33000000000000E+0002
 760 1988.TXEDPLAT 1.17000000000000E+0002
 761 1988.TXHIPLAINS 2.62400000000000E+0003
 762 1988.TXROLINGPL 1.05600000000000E+0003
 763 1988.TXSOUTH 5.58000000000000E+0002
 764 1988.TXTRANSPEC 1.20000000000000E+0001
 765 1989.TXCNTBLACK 1.83500000000000E+0003
 766 1989.TXEAST 1.63000000000000E+0002
 767 1989.TXEDPLAT 1.87000000000000E+0002
 768 1989.TXHIPLAINS 2.72600000000000E+0003
 769 1989.TXROLINGPL 1.36000000000000E+0003
 770 1989.TXSOUTH 5.61000000000000E+0002
 771 1989.TXTRANSPEC 4.00000000000000E+0000
 772 1990.TXCNTBLACK 1.88500000000000E+0003
 773 1990.TXEAST 1.44000000000000E+0002
 774 1990.TXEDPLAT 1.93000000000000E+0002
 775 1990.TXHIPLAINS 3.04700000000000E+0003
 776 1990.TXROLINGPL 1.48700000000000E+0003
 777 1990.TXSOUTH 6.82000000000000E+0002
 778 1991.TXCNTBLACK 1.68900000000000E+0003
 779 1991.TXEAST 1.25000000000000E+0002
 780 1991.TXEDPLAT 1.58000000000000E+0002
 781 1991.TXHIPLAINS 2.56100000000000E+0003

17-31

 782 1991.TXROLINGPL 1.05100000000000E+0003
 783 1991.TXSOUTH 7.05000000000000E+0002
 784 1991.TXTRANSPEC 1.00000000000000E+0000
 785 1992.TXCNTBLACK 2.36300000000000E+0003
 786 1992.TXEAST 1.92000000000000E+0002
 787 1992.TXEDPLAT 2.29000000000000E+0002
 788 1992.TXHIPLAINS 3.46700000000000E+0003
 789 1992.TXROLINGPL 1.45100000000000E+0003
 790 1992.TXSOUTH 9.72000000000000E+0002
 791 1992.TXTRANSPEC 2.00000000000000E+0000
 792 /;

 793 option subacre:0:1:1;display subacre;
 794
 795 parameter totacre(year) total texas acres;
LIBINCLUDE C:\GAMS25\SSIMPORT.GMS
 846 parameter totacre /
INCLUDE C:\GAMS25\225A\GAMSLINK.SCR
 848 * Tuesday, June 30 1998 15:28:20
 849 * C:\GAMS25\IM1.WK1 TOTACRE
 850 1971 7.21300000000000E+0003
 851 1972 7.29800000000000E+0003
 852 1973 1.02380000000000E+0004
 853 1974 9.20300000000000E+0003
 854 1975 1.30680000000000E+0004
 855 1976 1.09010000000000E+0004
 856 1977 1.03810000000000E+0004
 857 1978 8.09900000000000E+0003
 858 1979 9.72100000000000E+0003
 859 1980 9.57900000000000E+0003
 860 1981 1.09320000000000E+0004
 861 1982 1.19200000000000E+0004
 862 1983 8.20300000000000E+0003
 863 1984 9.34100000000000E+0003
 864 1985 1.05410000000000E+0004
 865 1986 9.09000000000000E+0003
 866 1987 6.85000000000000E+0003
 867 1988 6.04500000000000E+0003
 868 1989 6.83600000000000E+0003
 869 1990 7.43800000000000E+0003
 870 1991 6.29000000000000E+0003
 871 1992 8.67600000000000E+0003
 872 /;
 873 option totacre:0:0:1;display totacre;

---- 581 PARAMETER TXACRE Texas historical acreage by crops

 corn soybeans wheat sorghum

1971.txhiplains 244 51 1029 2926
1971.txrolingpl 317 521
1971.txcntblack 163 9 124 934
1971.txeast 34 9 67
1971.txedplat 2 8 106
1971.txsouth 64 2 8 580
1971.txtranspec 7 8
1972.txhiplains 199 58 1185 2486
1972.txrolingpl 609 518
1972.txcntblack 142 35 142 988
1972.txeast 30 29 1 59
1972.txedplat 1 28 100
1972.txsouth 45 3 23 601
1972.txtranspec 8 8
1973.txhiplains 367 131 2186 3030
1973.txrolingpl 817 645
1973.txcntblack 133 29 268 1261

17-32

1973.txeast 27 59 4 43
1973.txedplat 64 137
1973.txsouth 72 7 52 893
1973.txtranspec 5 8
1974.txhiplains 541 88 1665 2175
1974.txrolingpl 1 1090 400
1974.txcntblack 125 24 393 1207
1974.txeast 34 34 6 74
1974.txedplat 1 72 131
1974.txsouth 61 4 66 997
1974.txtranspec 5 9
1975.txhiplains 771 127 3060 2629
1975.txrolingpl 1840 617
1975.txcntblack 139 43 519 1498
1975.txeast 41 40 3 60
1975.txedplat 2 154 138
1975.txsouth 91 5 92 1171
1975.txtranspec 26 2
1976.txhiplains 1210 75 2125 1890
1976.txrolingpl 4 1665 479
1976.txcntblack 132 48 690 1270
1976.txeast 21 53 17 48
1976.txedplat 2 74 149
1976.txsouth 71 81 757
1976.txtranspec 40
1977.txhiplains 1211 152 2337 1320
1977.txrolingpl 3 1580 335
1977.txcntblack 165 74 555 1328
1977.txeast 37 103 19 30
1977.txedplat 5 124 121
1977.txsouth 119 8 62 666
1977.txtranspec 19 8
1978.txhiplains 907 188 1285 1370
1978.txrolingpl 2 834 280
1978.txcntblack 199 51 474 1351
1978.txeast 33 103 18 31
1978.txedplat 3 46 88
1978.txsouth 144 6 33 640
1978.txtranspec 5 8
1979.txhiplains 700 217 2393 1230
1979.txrolingpl 3 1370 290
1979.txcntblack 209 69 620 1188
1979.txeast 37 110 17 24
1979.txedplat 3 115 121
1979.txsouth 173 16 72 731
1979.txtranspec 5 8
1980.txhiplains 735 65 2595 1137
1980.txrolingpl 3 1255 168
1980.txcntblack 226 37 1116 983
1980.txeast 28 122 62 27
1980.txedplat 2 85 79
1980.txsouth 154 5 46 626
1980.txtranspec 23
1981.txhiplains 522 58 2750 1239
1981.txrolingpl 1 1864 195
1981.txcntblack 212 22 1511 894
1981.txeast 31 73 142 41
1981.txedplat 1 145 88
1981.txsouth 187 87 822
1981.txtranspec 38 9
1982.txhiplains 523 445 2520 2180
1982.txrolingpl 2 1605 357
1982.txcntblack 237 55 1437 1062
1982.txeast 25 58 102 44
1982.txedplat 2 178 109
1982.txsouth 167 2 108 682
1982.txtranspec 18 2

17-33

1983.txhiplains 400 108 1985 940
1983.txrolingpl 1 1275 237
1983.txcntblack 266 49 1069 657
1983.txeast 23 34 84 30
1983.txedplat 1 97 89
1983.txsouth 203 51 589
1983.txtranspec 15
1984.txhiplains 532 40 2330 1295
1984.txrolingpl 3 1260 174
1984.txcntblack 415 32 1172 862
1984.txeast 35 44 66 26
1984.txedplat 1 90 72
1984.txsouth 220 45 609
1984.txtranspec 10 8
1985.txhiplains 517 75 2620 1567
1985.txrolingpl 6 1680 287
1985.txcntblack 361 17 1175 861
1985.txeast 43 20 129 25
1985.txedplat 28 1 128 87
1985.txsouth 216 93 591
1985.txtranspec 6 8
1986.txhiplains 467 56 2340 1468
1986.txrolingpl 5 1400 249
1986.txcntblack 403 26 845 764
1986.txeast 56 32 40 51
1986.txedplat 6 82 79
1986.txsouth 163 67 476
1986.txtranspec 7 8
1987.txhiplains 412 40 1730 895
1987.txrolingpl 3 1113 191
1987.txcntblack 383 31 552 607
1987.txeast 30 21 43 36
1987.txedplat 3 87 68
1987.txsouth 170 63 361
1987.txtranspec 3 8
1988.txhiplains 423 61 1472 668
1988.txrolingpl 3 930 123
1988.txcntblack 392 25 629 499
1988.txeast 36 31 45 21
1988.txedplat 3 58 56
1988.txsouth 222 54 282
1988.txtranspec 3 9
1989.txhiplains 592 178 748 1208
1989.txrolingpl 3 1225 132
1989.txcntblack 369 49 774 643
1989.txeast 36 42 55 30
1989.txedplat 3 121 63
1989.txsouth 182 5 66 308
1989.txtranspec 2 2
1990.txhiplains 621 28 1736 662
1990.txrolingpl 7 1354 126
1990.txcntblack 363 44 833 645
1990.txeast 34 34 53 23
1990.txedplat 3 127 63
1990.txsouth 230 2 83 367
1991.txhiplains 642 24 1157 738
1991.txrolingpl 7 903 141
1991.txcntblack 375 38 556 720
1991.txeast 35 29 35 26
1991.txedplat 3 85 70
1991.txsouth 238 2 56 409
1991.txtranspec 1
1992.txhiplains 694 56 1571 1146
1992.txrolingpl 8 1225 218
1992.txcntblack 405 87 754 1117
1992.txeast 38 66 48 40
1992.txedplat 3 2 115 109

17-34

1992.txsouth 257 4 76 635
1992.txtranspec 2

---- 793 PARAMETER SUBACRE Texas subreg acres

 txhiplains txrolingpl txcntblack txeast txedplat txsouth

1971 4250 838 1230 110 116 654
1972 3928 1127 1307 119 129 672
1973 5714 1462 1691 133 201 1024
1974 4469 1491 1749 148 204 1128
1975 6587 2457 2199 144 294 1359
1976 5300 2148 2140 139 225 909
1977 5020 1918 2122 189 250 855
1978 3750 1116 2075 185 137 823
1979 4540 1663 2086 188 239 992
1980 4532 1426 2362 239 166 831
1981 4569 2060 2639 287 234 1096
1982 5668 1964 2791 229 289 959
1983 3433 1513 2041 171 187 843
1984 4197 1437 2481 171 163 874
1985 4779 1973 2414 217 244 900
1986 4331 1654 2038 179 167 706
1987 3077 1307 1573 130 158 594
1988 2624 1056 1545 133 117 558
1989 2726 1360 1835 163 187 561
1990 3047 1487 1885 144 193 682
1991 2561 1051 1689 125 158 705
1992 3467 1451 2363 192 229 972

 + txtranspec

1971 15
1972 16
1973 13
1974 14
1975 28
1976 40
1977 27
1978 13
1979 13
1980 23
1981 47
1982 20
1983 15
1984 18
1985 14
1986 15
1987 11
1988 12
1989 4
1991 1
1992 2

---- 873 PARAMETER TOTACRE total texas acres

1971 7213
1972 7298
1973 10238
1974 9203
1975 13068
1976 10901
1977 10381
1978 8099
1979 9721

17-35

1980 9579
1981 10932
1982 11920
1983 8203
1984 9341
1985 10541
1986 9090
1987 6850
1988 6045
1989 6836
1990 7438
1991 6290
1992 8676

17-36

##############################
*Examples for Readable data file
*###############################
set year /1971*1992/
 crop /corn, soybeans, wheat, sorghum/
 subreg /txhiplains, txrolingpl, txcntblack, txeast, txedplat,
 txsouth, txtranspec/;

Table TXACRE(year,subreg,crop) Texas historical acreage by crops

 corn soybeans wheat sorghum

1971.TXHIPLAINS 244 51 1029 2926
1971.TXROLINGPL 317 521
1971.TXCNTBLACK 163 9 124 934
1971.TXEAST 34 9 67
1971.TXEDPLAT 2 8 106
1971.TXSOUTH 64 2 8 580
1971.TXTRANSPEC 7 8
1972.TXHIPLAINS 199 58 1185 2486
1972.TXROLINGPL 609 518
1972.TXCNTBLACK 142 35 142 988
1972.TXEAST 30 29 1 59
1972.TXEDPLAT 1 28 100
1972.TXSOUTH 45 3 23 601
1972.TXTRANSPEC 8 8
1973.TXHIPLAINS 367 131 2186 3030
1973.TXROLINGPL 817 645
1973.TXCNTBLACK 133 29 268 1261
1973.TXEAST 27 59 4 43
1973.TXEDPLAT 64 137
1973.TXSOUTH 72 7 52 893
1973.TXTRANSPEC 5 8
1974.TXHIPLAINS 541 88 1665 2175
1974.TXROLINGPL 1 1090 400
1974.TXCNTBLACK 125 24 393 1207
1974.TXEAST 34 34 6 74
1974.TXEDPLAT 1 72 131
1974.TXSOUTH 61 4 66 997
1974.TXTRANSPEC 5 9
1975.TXHIPLAINS 771 127 3060 2629
1975.TXROLINGPL 1840 617
1975.TXCNTBLACK 139 43 519 1498
1975.TXEAST 41 40 3 60
1975.TXEDPLAT 2 154 138
1975.TXSOUTH 91 5 92 1171
1975.TXTRANSPEC 26 2
1976.TXHIPLAINS 1210 75 2125 1890
1976.TXROLINGPL 4 1665 479
1976.TXCNTBLACK 132 48 690 1270
1976.TXEAST 21 53 17 48
1976.TXEDPLAT 2 74 149
1976.TXSOUTH 71 81 757
1976.TXTRANSPEC 40
1977.TXHIPLAINS 1211 152 2337 1320
1977.TXROLINGPL 3 1580 335
1977.TXCNTBLACK 165 74 555 1328
1977.TXEAST 37 103 19 30
1977.TXEDPLAT 5 124 121
1977.TXSOUTH 119 8 62 666
1977.TXTRANSPEC 19 8
1978.TXHIPLAINS 907 188 1285 1370
1978.TXROLINGPL 2 834 280

17-37

1978.TXCNTBLACK 199 51 474 1351
1978.TXEAST 33 103 18 31
1978.TXEDPLAT 3 46 88
1978.TXSOUTH 144 6 33 640
1978.TXTRANSPEC 5 8
1979.TXHIPLAINS 700 217 2393 1230
1979.TXROLINGPL 3 1370 290
1979.TXCNTBLACK 209 69 620 1188
1979.TXEAST 37 110 17 24
1979.TXEDPLAT 3 115 121
1979.TXSOUTH 173 16 72 731
1979.TXTRANSPEC 5 8
1980.TXHIPLAINS 735 65 2595 1137
1980.TXROLINGPL 3 1255 168
1980.TXCNTBLACK 226 37 1116 983
1980.TXEAST 28 122 62 27
1980.TXEDPLAT 2 85 79
1980.TXSOUTH 154 5 46 626
1980.TXTRANSPEC 23
1981.TXHIPLAINS 522 58 2750 1239
1981.TXROLINGPL 1 1864 195
1981.TXCNTBLACK 212 22 1511 894
1981.TXEAST 31 73 142 41
1981.TXEDPLAT 1 145 88
1981.TXSOUTH 187 87 822
1981.TXTRANSPEC 38 9
1982.TXHIPLAINS 523 445 2520 2180
1982.TXROLINGPL 2 1605 357
1982.TXCNTBLACK 237 55 1437 1062
1982.TXEAST 25 58 102 44
1982.TXEDPLAT 2 178 109
1982.TXSOUTH 167 2 108 682
1982.TXTRANSPEC 18 2
1983.TXHIPLAINS 400 108 1985 940
1983.TXROLINGPL 1 1275 237
1983.TXCNTBLACK 266 49 1069 657
1983.TXEAST 23 34 84 30
1983.TXEDPLAT 1 97 89
1983.TXSOUTH 203 51 589
1983.TXTRANSPEC 15
1984.TXHIPLAINS 532 40 2330 1295
1984.TXROLINGPL 3 1260 174
1984.TXCNTBLACK 415 32 1172 862
1984.TXEAST 35 44 66 26
1984.TXEDPLAT 1 90 72
1984.TXSOUTH 220 45 609
1984.TXTRANSPEC 10 8
1985.TXHIPLAINS 517 75 2620 1567
1985.TXROLINGPL 6 1680 287
1985.TXCNTBLACK 361 17 1175 861
1985.TXEAST 43 20 129 25
1985.TXEDPLAT 28 1 128 87
1985.TXSOUTH 216 93 591
1985.TXTRANSPEC 6 8
1986.TXHIPLAINS 467 56 2340 1468
1986.TXROLINGPL 5 1400 249
1986.TXCNTBLACK 403 26 845 764
1986.TXEAST 56 32 40 51
1986.TXEDPLAT 6 82 79
1986.TXSOUTH 163 67 476
1986.TXTRANSPEC 7 8
1987.TXHIPLAINS 412 40 1730 895
1987.TXROLINGPL 3 1113 191
1987.TXCNTBLACK 383 31 552 607
1987.TXEAST 30 21 43 36
1987.TXEDPLAT 3 87 68
1987.TXSOUTH 170 63 361

17-38

1987.TXTRANSPEC 3 8
1988.TXHIPLAINS 423 61 1472 668
1988.TXROLINGPL 3 930 123
1988.TXCNTBLACK 392 25 629 499
1988.TXEAST 36 31 45 21
1988.TXEDPLAT 3 58 56
1988.TXSOUTH 222 54 282
1988.TXTRANSPEC 3 9
1989.TXHIPLAINS 592 178 748 1208
1989.TXROLINGPL 3 1225 132
1989.TXCNTBLACK 369 49 774 643
1989.TXEAST 36 42 55 30
1989.TXEDPLAT 3 121 63
1989.TXSOUTH 182 5 66 308
1989.TXTRANSPEC 2 2
1990.TXHIPLAINS 621 28 1736 662
1990.TXROLINGPL 7 1354 126
1990.TXCNTBLACK 363 44 833 645
1990.TXEAST 34 34 53 23
1990.TXEDPLAT 3 127 63
1990.TXSOUTH 230 2 83 367
1991.TXHIPLAINS 642 24 1157 738
1991.TXROLINGPL 7 903 141
1991.TXCNTBLACK 375 38 556 720
1991.TXEAST 35 29 35 26
1991.TXEDPLAT 3 85 70
1991.TXSOUTH 238 2 56 409
1991.TXTRANSPEC 1
1992.TXHIPLAINS 694 56 1571 1146
1992.TXROLINGPL 8 1225 218
1992.TXCNTBLACK 405 87 754 1117
1992.TXEAST 38 66 48 40
1992.TXEDPLAT 3 2 115 109
1992.TXSOUTH 257 4 76 635
1992.TXTRANSPEC 2
;

parameter subacre(year,subreg) subreg acres ;
subacre(year,subreg)
 =sum(crop, txacre(year,subreg,crop));

parameter totacre(year) total texas acres ;
totacre(year)
 =sum(subreg, subacre(year,subreg));

file result1 /totacre.gms/;
put result1;

$libinclude c:\gams25\gams2prm totacre

file result2 /subacre.gms/;
put result2;

$libinclude c:\gams25\gams2txt subacre

file result3 /txacre.gms/;
put result3;

17-39

$libinclude c:\gams25\gams2txt txacre

17-40

*The Readable List files
1)Totacre.gms file
parameter totacre total texas acres/
*=>gams2prm totacre
* Called from C:\GAMS25\EXAM1, line 236
* 06/30/98 16:09:44
1971 7.21300000000000E+03
1972 7.29800000000000E+03
1973 1.02380000000000E+04
1974 9.20300000000000E+03
1975 1.30680000000000E+04
1976 1.09010000000000E+04
1977 1.03810000000000E+04
1978 8.09900000000000E+03
1979 9.72100000000000E+03
1980 9.57900000000000E+03
1981 1.09320000000000E+04
1982 1.19200000000000E+04
1983 8.20300000000000E+03
1984 9.34100000000000E+03
1985 1.05410000000000E+04
1986 9.09000000000000E+03
1987 6.85000000000000E+03
1988 6.04500000000000E+03
1989 6.83600000000000E+03
1990 7.43800000000000E+03
1991 6.29000000000000E+03
1992 8.67600000000000E+03
/;

2)Subacre.gms file
*=>gams2txt subacre
* Called from C:\GAMS25\EXAM1, line 465
* 06/30/98 16:09:44
1971.txhiplains 4.25000000000000E+03
1971.txrolingpl 8.38000000000000E+02
1971.txcntblack 1.23000000000000E+03
1971.txeast 1.10000000000000E+02
1971.txedplat 1.16000000000000E+02
1971.txsouth 6.54000000000000E+02
1971.txtranspec 1.50000000000000E+01
1972.txhiplains 3.92800000000000E+03
1972.txrolingpl 1.12700000000000E+03
1972.txcntblack 1.30700000000000E+03
1972.txeast 1.19000000000000E+02
1972.txedplat 1.29000000000000E+02
1972.txsouth 6.72000000000000E+02
1972.txtranspec 1.60000000000000E+01
1973.txhiplains 5.71400000000000E+03
1973.txrolingpl 1.46200000000000E+03

17-41

1973.txcntblack 1.69100000000000E+03
1973.txeast 1.33000000000000E+02
1973.txedplat 2.01000000000000E+02
1973.txsouth 1.02400000000000E+03
1973.txtranspec 1.30000000000000E+01
1974.txhiplains 4.46900000000000E+03
1974.txrolingpl 1.49100000000000E+03
1974.txcntblack 1.74900000000000E+03
1974.txeast 1.48000000000000E+02
1974.txedplat 2.04000000000000E+02
1974.txsouth 1.12800000000000E+03
1974.txtranspec 1.40000000000000E+01
1975.txhiplains 6.58700000000000E+03
1975.txrolingpl 2.45700000000000E+03
1975.txcntblack 2.19900000000000E+03
1975.txeast 1.44000000000000E+02
1975.txedplat 2.94000000000000E+02
1975.txsouth 1.35900000000000E+03
1975.txtranspec 2.80000000000000E+01
1976.txhiplains 5.30000000000000E+03
1976.txrolingpl 2.14800000000000E+03
1976.txcntblack 2.14000000000000E+03
1976.txeast 1.39000000000000E+02
1976.txedplat 2.25000000000000E+02
1976.txsouth 9.09000000000000E+02
1976.txtranspec 4.00000000000000E+01
1977.txhiplains 5.02000000000000E+03
1977.txrolingpl 1.91800000000000E+03
1977.txcntblack 2.12200000000000E+03
1977.txeast 1.89000000000000E+02
1977.txedplat 2.50000000000000E+02
1977.txsouth 8.55000000000000E+02
1977.txtranspec 2.70000000000000E+01
1978.txhiplains 3.75000000000000E+03
1978.txrolingpl 1.11600000000000E+03
1978.txcntblack 2.07500000000000E+03
1978.txeast 1.85000000000000E+02
1978.txedplat 1.37000000000000E+02
1978.txsouth 8.23000000000000E+02
1978.txtranspec 1.30000000000000E+01
1979.txhiplains 4.54000000000000E+03
1979.txrolingpl 1.66300000000000E+03
1979.txcntblack 2.08600000000000E+03
1979.txeast 1.88000000000000E+02
1979.txedplat 2.39000000000000E+02
1979.txsouth 9.92000000000000E+02
1979.txtranspec 1.30000000000000E+01
1980.txhiplains 4.53200000000000E+03
1980.txrolingpl 1.42600000000000E+03
1980.txcntblack 2.36200000000000E+03
1980.txeast 2.39000000000000E+02
1980.txedplat 1.66000000000000E+02
1980.txsouth 8.31000000000000E+02
1980.txtranspec 2.30000000000000E+01
1981.txhiplains 4.56900000000000E+03
1981.txrolingpl 2.06000000000000E+03
1981.txcntblack 2.63900000000000E+03
1981.txeast 2.87000000000000E+02
1981.txedplat 2.34000000000000E+02
1981.txsouth 1.09600000000000E+03
1981.txtranspec 4.70000000000000E+01
1982.txhiplains 5.66800000000000E+03
1982.txrolingpl 1.96400000000000E+03
1982.txcntblack 2.79100000000000E+03
1982.txeast 2.29000000000000E+02
1982.txedplat 2.89000000000000E+02
1982.txsouth 9.59000000000000E+02

17-42

1982.txtranspec 2.00000000000000E+01
1983.txhiplains 3.43300000000000E+03
1983.txrolingpl 1.51300000000000E+03
1983.txcntblack 2.04100000000000E+03
1983.txeast 1.71000000000000E+02
1983.txedplat 1.87000000000000E+02
1983.txsouth 8.43000000000000E+02
1983.txtranspec 1.50000000000000E+01
1984.txhiplains 4.19700000000000E+03
1984.txrolingpl 1.43700000000000E+03
1984.txcntblack 2.48100000000000E+03
1984.txeast 1.71000000000000E+02
1984.txedplat 1.63000000000000E+02
1984.txsouth 8.74000000000000E+02
1984.txtranspec 1.80000000000000E+01
1985.txhiplains 4.77900000000000E+03
1985.txrolingpl 1.97300000000000E+03
1985.txcntblack 2.41400000000000E+03
1985.txeast 2.17000000000000E+02
1985.txedplat 2.44000000000000E+02
1985.txsouth 9.00000000000000E+02
1985.txtranspec 1.40000000000000E+01
1986.txhiplains 4.33100000000000E+03
1986.txrolingpl 1.65400000000000E+03
1986.txcntblack 2.03800000000000E+03
1986.txeast 1.79000000000000E+02
1986.txedplat 1.67000000000000E+02
1986.txsouth 7.06000000000000E+02
1986.txtranspec 1.50000000000000E+01
1987.txhiplains 3.07700000000000E+03
1987.txrolingpl 1.30700000000000E+03
1987.txcntblack 1.57300000000000E+03
1987.txeast 1.30000000000000E+02
1987.txedplat 1.58000000000000E+02
1987.txsouth 5.94000000000000E+02
1987.txtranspec 1.10000000000000E+01
1988.txhiplains 2.62400000000000E+03
1988.txrolingpl 1.05600000000000E+03
1988.txcntblack 1.54500000000000E+03
1988.txeast 1.33000000000000E+02
1988.txedplat 1.17000000000000E+02
1988.txsouth 5.58000000000000E+02
1988.txtranspec 1.20000000000000E+01
1989.txhiplains 2.72600000000000E+03
1989.txrolingpl 1.36000000000000E+03
1989.txcntblack 1.83500000000000E+03
1989.txeast 1.63000000000000E+02
1989.txedplat 1.87000000000000E+02
1989.txsouth 5.61000000000000E+02
1989.txtranspec 4.00000000000000E+00
1990.txhiplains 3.04700000000000E+03
1990.txrolingpl 1.48700000000000E+03
1990.txcntblack 1.88500000000000E+03
1990.txeast 1.44000000000000E+02
1990.txedplat 1.93000000000000E+02
1990.txsouth 6.82000000000000E+02
1991.txhiplains 2.56100000000000E+03
1991.txrolingpl 1.05100000000000E+03
1991.txcntblack 1.68900000000000E+03
1991.txeast 1.25000000000000E+02
1991.txedplat 1.58000000000000E+02
1991.txsouth 7.05000000000000E+02
1991.txtranspec 1.00000000000000E+00
1992.txhiplains 3.46700000000000E+03
1992.txrolingpl 1.45100000000000E+03
1992.txcntblack 2.36300000000000E+03
1992.txeast 1.92000000000000E+02

17-43

1992.txedplat 2.29000000000000E+02
1992.txsouth 9.72000000000000E+02
1992.txtranspec 2.00000000000000E+00

3)Txacre.gms file
*=>gams2txt txacre
* Called from C:\GAMS25\EXAM1, line 628
* 06/30/98 16:09:44
1971.txhiplains.corn 2.44000000000000E+02
1971.txhiplains.soybeans 5.10000000000000E+01
1971.txhiplains.wheat 1.02900000000000E+03
1971.txhiplains.sorghum 2.92600000000000E+03
1971.txrolingpl.wheat 3.17000000000000E+02
1971.txrolingpl.sorghum 5.21000000000000E+02
1971.txcntblack.corn 1.63000000000000E+02
1971.txcntblack.soybeans 9.00000000000000E+00
1971.txcntblack.wheat 1.24000000000000E+02
1971.txcntblack.sorghum 9.34000000000000E+02
1971.txeast.corn 3.40000000000000E+01
1971.txeast.soybeans 9.00000000000000E+00
1971.txeast.sorghum 6.70000000000000E+01
1971.txedplat.corn 2.00000000000000E+00
1971.txedplat.wheat 8.00000000000000E+00
1971.txedplat.sorghum 1.06000000000000E+02
1971.txsouth.corn 6.40000000000000E+01
1971.txsouth.soybeans 2.00000000000000E+00
1971.txsouth.wheat 8.00000000000000E+00
1971.txsouth.sorghum 5.80000000000000E+02
1971.txtranspec.wheat 7.00000000000000E+00
1971.txtranspec.sorghum 8.00000000000000E+00
1972.txhiplains.corn 1.99000000000000E+02
1972.txhiplains.soybeans 5.80000000000000E+01
1972.txhiplains.wheat 1.18500000000000E+03
1972.txhiplains.sorghum 2.48600000000000E+03
1972.txrolingpl.wheat 6.09000000000000E+02
1972.txrolingpl.sorghum 5.18000000000000E+02
1972.txcntblack.corn 1.42000000000000E+02
1972.txcntblack.soybeans 3.50000000000000E+01
1972.txcntblack.wheat 1.42000000000000E+02
1972.txcntblack.sorghum 9.88000000000000E+02
1972.txeast.corn 3.00000000000000E+01
1972.txeast.soybeans 2.90000000000000E+01
1972.txeast.wheat 1.00000000000000E+00
1972.txeast.sorghum 5.90000000000000E+01
1972.txedplat.corn 1.00000000000000E+00
1972.txedplat.wheat 2.80000000000000E+01
1972.txedplat.sorghum 1.00000000000000E+02
1972.txsouth.corn 4.50000000000000E+01
1972.txsouth.soybeans 3.00000000000000E+00
1972.txsouth.wheat 2.30000000000000E+01
1972.txsouth.sorghum 6.01000000000000E+02
1972.txtranspec.wheat 8.00000000000000E+00
1972.txtranspec.sorghum 8.00000000000000E+00
1973.txhiplains.corn 3.67000000000000E+02
1973.txhiplains.soybeans 1.31000000000000E+02
1973.txhiplains.wheat 2.18600000000000E+03
1973.txhiplains.sorghum 3.03000000000000E+03
1973.txrolingpl.wheat 8.17000000000000E+02
1973.txrolingpl.sorghum 6.45000000000000E+02
1973.txcntblack.corn 1.33000000000000E+02
1973.txcntblack.soybeans 2.90000000000000E+01
1973.txcntblack.wheat 2.68000000000000E+02
1973.txcntblack.sorghum 1.26100000000000E+03
1973.txeast.corn 2.70000000000000E+01

17-44

1973.txeast.soybeans 5.90000000000000E+01
1973.txeast.wheat 4.00000000000000E+00
1973.txeast.sorghum 4.30000000000000E+01
1973.txedplat.wheat 6.40000000000000E+01
1973.txedplat.sorghum 1.37000000000000E+02
1973.txsouth.corn 7.20000000000000E+01
1973.txsouth.soybeans 7.00000000000000E+00
1973.txsouth.wheat 5.20000000000000E+01
1973.txsouth.sorghum 8.93000000000000E+02
1973.txtranspec.wheat 5.00000000000000E+00
1973.txtranspec.sorghum 8.00000000000000E+00
1974.txhiplains.corn 5.41000000000000E+02
1974.txhiplains.soybeans 8.80000000000000E+01
1974.txhiplains.wheat 1.66500000000000E+03
1974.txhiplains.sorghum 2.17500000000000E+03
1974.txrolingpl.corn 1.00000000000000E+00
1974.txrolingpl.wheat 1.09000000000000E+03
1974.txrolingpl.sorghum 4.00000000000000E+02
1974.txcntblack.corn 1.25000000000000E+02
1974.txcntblack.soybeans 2.40000000000000E+01
1974.txcntblack.wheat 3.93000000000000E+02
1974.txcntblack.sorghum 1.20700000000000E+03
1974.txeast.corn 3.40000000000000E+01
1974.txeast.soybeans 3.40000000000000E+01
1974.txeast.wheat 6.00000000000000E+00
1974.txeast.sorghum 7.40000000000000E+01
1974.txedplat.corn 1.00000000000000E+00
1974.txedplat.wheat 7.20000000000000E+01
1974.txedplat.sorghum 1.31000000000000E+02
1974.txsouth.corn 6.10000000000000E+01
1974.txsouth.soybeans 4.00000000000000E+00
1974.txsouth.wheat 6.60000000000000E+01
1974.txsouth.sorghum 9.97000000000000E+02
1974.txtranspec.wheat 5.00000000000000E+00
1974.txtranspec.sorghum 9.00000000000000E+00
1975.txhiplains.corn 7.71000000000000E+02
1975.txhiplains.soybeans 1.27000000000000E+02
1975.txhiplains.wheat 3.06000000000000E+03
1975.txhiplains.sorghum 2.62900000000000E+03
1975.txrolingpl.wheat 1.84000000000000E+03
1975.txrolingpl.sorghum 6.17000000000000E+02
1975.txcntblack.corn 1.39000000000000E+02
1975.txcntblack.soybeans 4.30000000000000E+01
1975.txcntblack.wheat 5.19000000000000E+02
1975.txcntblack.sorghum 1.49800000000000E+03
1975.txeast.corn 4.10000000000000E+01
1975.txeast.soybeans 4.00000000000000E+01
1975.txeast.wheat 3.00000000000000E+00
1975.txeast.sorghum 6.00000000000000E+01
1975.txedplat.corn 2.00000000000000E+00
1975.txedplat.wheat 1.54000000000000E+02
1975.txedplat.sorghum 1.38000000000000E+02
1975.txsouth.corn 9.10000000000000E+01
1975.txsouth.soybeans 5.00000000000000E+00
1975.txsouth.wheat 9.20000000000000E+01
1975.txsouth.sorghum 1.17100000000000E+03
1975.txtranspec.wheat 2.60000000000000E+01
1975.txtranspec.sorghum 2.00000000000000E+00
1976.txhiplains.corn 1.21000000000000E+03
1976.txhiplains.soybeans 7.50000000000000E+01
1976.txhiplains.wheat 2.12500000000000E+03
1976.txhiplains.sorghum 1.89000000000000E+03
1976.txrolingpl.corn 4.00000000000000E+00
1976.txrolingpl.wheat 1.66500000000000E+03
1976.txrolingpl.sorghum 4.79000000000000E+02
1976.txcntblack.corn 1.32000000000000E+02
1976.txcntblack.soybeans 4.80000000000000E+01

17-45

1976.txcntblack.wheat 6.90000000000000E+02
1976.txcntblack.sorghum 1.27000000000000E+03
1976.txeast.corn 2.10000000000000E+01
1976.txeast.soybeans 5.30000000000000E+01
1976.txeast.wheat 1.70000000000000E+01
1976.txeast.sorghum 4.80000000000000E+01
1976.txedplat.corn 2.00000000000000E+00
1976.txedplat.wheat 7.40000000000000E+01
1976.txedplat.sorghum 1.49000000000000E+02
1976.txsouth.corn 7.10000000000000E+01
1976.txsouth.wheat 8.10000000000000E+01
1976.txsouth.sorghum 7.57000000000000E+02
1976.txtranspec.wheat 4.00000000000000E+01
1977.txhiplains.corn 1.21100000000000E+03
1977.txhiplains.soybeans 1.52000000000000E+02
1977.txhiplains.wheat 2.33700000000000E+03
1977.txhiplains.sorghum 1.32000000000000E+03
1977.txrolingpl.corn 3.00000000000000E+00
1977.txrolingpl.wheat 1.58000000000000E+03
1977.txrolingpl.sorghum 3.35000000000000E+02
1977.txcntblack.corn 1.65000000000000E+02
1977.txcntblack.soybeans 7.40000000000000E+01
1977.txcntblack.wheat 5.55000000000000E+02
1977.txcntblack.sorghum 1.32800000000000E+03
1977.txeast.corn 3.70000000000000E+01
1977.txeast.soybeans 1.03000000000000E+02
1977.txeast.wheat 1.90000000000000E+01
1977.txeast.sorghum 3.00000000000000E+01
1977.txedplat.corn 5.00000000000000E+00
1977.txedplat.wheat 1.24000000000000E+02
1977.txedplat.sorghum 1.21000000000000E+02
1977.txsouth.corn 1.19000000000000E+02
1977.txsouth.soybeans 8.00000000000000E+00
1977.txsouth.wheat 6.20000000000000E+01
1977.txsouth.sorghum 6.66000000000000E+02
1977.txtranspec.wheat 1.90000000000000E+01
1977.txtranspec.sorghum 8.00000000000000E+00
1978.txhiplains.corn 9.07000000000000E+02
1978.txhiplains.soybeans 1.88000000000000E+02
1978.txhiplains.wheat 1.28500000000000E+03
1978.txhiplains.sorghum 1.37000000000000E+03
1978.txrolingpl.corn 2.00000000000000E+00
1978.txrolingpl.wheat 8.34000000000000E+02
1978.txrolingpl.sorghum 2.80000000000000E+02
1978.txcntblack.corn 1.99000000000000E+02
1978.txcntblack.soybeans 5.10000000000000E+01
1978.txcntblack.wheat 4.74000000000000E+02
1978.txcntblack.sorghum 1.35100000000000E+03
1978.txeast.corn 3.30000000000000E+01
1978.txeast.soybeans 1.03000000000000E+02
1978.txeast.wheat 1.80000000000000E+01
1978.txeast.sorghum 3.10000000000000E+01
1978.txedplat.corn 3.00000000000000E+00
1978.txedplat.wheat 4.60000000000000E+01
1978.txedplat.sorghum 8.80000000000000E+01
1978.txsouth.corn 1.44000000000000E+02
1978.txsouth.soybeans 6.00000000000000E+00
1978.txsouth.wheat 3.30000000000000E+01
1978.txsouth.sorghum 6.40000000000000E+02
1978.txtranspec.wheat 5.00000000000000E+00
1978.txtranspec.sorghum 8.00000000000000E+00
1979.txhiplains.corn 7.00000000000000E+02
1979.txhiplains.soybeans 2.17000000000000E+02
1979.txhiplains.wheat 2.39300000000000E+03
1979.txhiplains.sorghum 1.23000000000000E+03
1979.txrolingpl.corn 3.00000000000000E+00
1979.txrolingpl.wheat 1.37000000000000E+03

17-46

1979.txrolingpl.sorghum 2.90000000000000E+02
1979.txcntblack.corn 2.09000000000000E+02
1979.txcntblack.soybeans 6.90000000000000E+01
1979.txcntblack.wheat 6.20000000000000E+02
1979.txcntblack.sorghum 1.18800000000000E+03
1979.txeast.corn 3.70000000000000E+01
1979.txeast.soybeans 1.10000000000000E+02
1979.txeast.wheat 1.70000000000000E+01
1979.txeast.sorghum 2.40000000000000E+01
1979.txedplat.corn 3.00000000000000E+00
1979.txedplat.wheat 1.15000000000000E+02
1979.txedplat.sorghum 1.21000000000000E+02
1979.txsouth.corn 1.73000000000000E+02
1979.txsouth.soybeans 1.60000000000000E+01
1979.txsouth.wheat 7.20000000000000E+01
1979.txsouth.sorghum 7.31000000000000E+02
1979.txtranspec.wheat 5.00000000000000E+00
1979.txtranspec.sorghum 8.00000000000000E+00
1980.txhiplains.corn 7.35000000000000E+02
1980.txhiplains.soybeans 6.50000000000000E+01
1980.txhiplains.wheat 2.59500000000000E+03
1980.txhiplains.sorghum 1.13700000000000E+03
1980.txrolingpl.corn 3.00000000000000E+00
1980.txrolingpl.wheat 1.25500000000000E+03
1980.txrolingpl.sorghum 1.68000000000000E+02
1980.txcntblack.corn 2.26000000000000E+02
1980.txcntblack.soybeans 3.70000000000000E+01
1980.txcntblack.wheat 1.11600000000000E+03
1980.txcntblack.sorghum 9.83000000000000E+02
1980.txeast.corn 2.80000000000000E+01
1980.txeast.soybeans 1.22000000000000E+02
1980.txeast.wheat 6.20000000000000E+01
1980.txeast.sorghum 2.70000000000000E+01
1980.txedplat.corn 2.00000000000000E+00
1980.txedplat.wheat 8.50000000000000E+01
1980.txedplat.sorghum 7.90000000000000E+01
1980.txsouth.corn 1.54000000000000E+02
1980.txsouth.soybeans 5.00000000000000E+00
1980.txsouth.wheat 4.60000000000000E+01
1980.txsouth.sorghum 6.26000000000000E+02
1980.txtranspec.wheat 2.30000000000000E+01
1981.txhiplains.corn 5.22000000000000E+02
1981.txhiplains.soybeans 5.80000000000000E+01
1981.txhiplains.wheat 2.75000000000000E+03
1981.txhiplains.sorghum 1.23900000000000E+03
1981.txrolingpl.corn 1.00000000000000E+00
1981.txrolingpl.wheat 1.86400000000000E+03
1981.txrolingpl.sorghum 1.95000000000000E+02
1981.txcntblack.corn 2.12000000000000E+02
1981.txcntblack.soybeans 2.20000000000000E+01
1981.txcntblack.wheat 1.51100000000000E+03
1981.txcntblack.sorghum 8.94000000000000E+02
1981.txeast.corn 3.10000000000000E+01
1981.txeast.soybeans 7.30000000000000E+01
1981.txeast.wheat 1.42000000000000E+02
1981.txeast.sorghum 4.10000000000000E+01
1981.txedplat.corn 1.00000000000000E+00
1981.txedplat.wheat 1.45000000000000E+02
1981.txedplat.sorghum 8.80000000000000E+01
1981.txsouth.corn 1.87000000000000E+02
1981.txsouth.wheat 8.70000000000000E+01
1981.txsouth.sorghum 8.22000000000000E+02
1981.txtranspec.wheat 3.80000000000000E+01
1981.txtranspec.sorghum 9.00000000000000E+00
1982.txhiplains.corn 5.23000000000000E+02
1982.txhiplains.soybeans 4.45000000000000E+02
1982.txhiplains.wheat 2.52000000000000E+03

17-47

1982.txhiplains.sorghum 2.18000000000000E+03
1982.txrolingpl.corn 2.00000000000000E+00
1982.txrolingpl.wheat 1.60500000000000E+03
1982.txrolingpl.sorghum 3.57000000000000E+02
1982.txcntblack.corn 2.37000000000000E+02
1982.txcntblack.soybeans 5.50000000000000E+01
1982.txcntblack.wheat 1.43700000000000E+03
1982.txcntblack.sorghum 1.06200000000000E+03
1982.txeast.corn 2.50000000000000E+01
1982.txeast.soybeans 5.80000000000000E+01
1982.txeast.wheat 1.02000000000000E+02
1982.txeast.sorghum 4.40000000000000E+01
1982.txedplat.corn 2.00000000000000E+00
1982.txedplat.wheat 1.78000000000000E+02
1982.txedplat.sorghum 1.09000000000000E+02
1982.txsouth.corn 1.67000000000000E+02
1982.txsouth.soybeans 2.00000000000000E+00
1982.txsouth.wheat 1.08000000000000E+02
1982.txsouth.sorghum 6.82000000000000E+02
1982.txtranspec.wheat 1.80000000000000E+01
1982.txtranspec.sorghum 2.00000000000000E+00
1983.txhiplains.corn 4.00000000000000E+02
1983.txhiplains.soybeans 1.08000000000000E+02
1983.txhiplains.wheat 1.98500000000000E+03
1983.txhiplains.sorghum 9.40000000000000E+02
1983.txrolingpl.corn 1.00000000000000E+00
1983.txrolingpl.wheat 1.27500000000000E+03
1983.txrolingpl.sorghum 2.37000000000000E+02
1983.txcntblack.corn 2.66000000000000E+02
1983.txcntblack.soybeans 4.90000000000000E+01
1983.txcntblack.wheat 1.06900000000000E+03
1983.txcntblack.sorghum 6.57000000000000E+02
1983.txeast.corn 2.30000000000000E+01
1983.txeast.soybeans 3.40000000000000E+01
1983.txeast.wheat 8.40000000000000E+01
1983.txeast.sorghum 3.00000000000000E+01
1983.txedplat.corn 1.00000000000000E+00
1983.txedplat.wheat 9.70000000000000E+01
1983.txedplat.sorghum 8.90000000000000E+01
1983.txsouth.corn 2.03000000000000E+02
1983.txsouth.wheat 5.10000000000000E+01
1983.txsouth.sorghum 5.89000000000000E+02
1983.txtranspec.wheat 1.50000000000000E+01
1984.txhiplains.corn 5.32000000000000E+02
1984.txhiplains.soybeans 4.00000000000000E+01
1984.txhiplains.wheat 2.33000000000000E+03
1984.txhiplains.sorghum 1.29500000000000E+03
1984.txrolingpl.corn 3.00000000000000E+00
1984.txrolingpl.wheat 1.26000000000000E+03
1984.txrolingpl.sorghum 1.74000000000000E+02
1984.txcntblack.corn 4.15000000000000E+02
1984.txcntblack.soybeans 3.20000000000000E+01
1984.txcntblack.wheat 1.17200000000000E+03
1984.txcntblack.sorghum 8.62000000000000E+02
1984.txeast.corn 3.50000000000000E+01
1984.txeast.soybeans 4.40000000000000E+01
1984.txeast.wheat 6.60000000000000E+01
1984.txeast.sorghum 2.60000000000000E+01
1984.txedplat.corn 1.00000000000000E+00
1984.txedplat.wheat 9.00000000000000E+01
1984.txedplat.sorghum 7.20000000000000E+01
1984.txsouth.corn 2.20000000000000E+02
1984.txsouth.wheat 4.50000000000000E+01
1984.txsouth.sorghum 6.09000000000000E+02
1984.txtranspec.wheat 1.00000000000000E+01
1984.txtranspec.sorghum 8.00000000000000E+00
1985.txhiplains.corn 5.17000000000000E+02

17-48

1985.txhiplains.soybeans 7.50000000000000E+01
1985.txhiplains.wheat 2.62000000000000E+03
1985.txhiplains.sorghum 1.56700000000000E+03
1985.txrolingpl.corn 6.00000000000000E+00
1985.txrolingpl.wheat 1.68000000000000E+03
1985.txrolingpl.sorghum 2.87000000000000E+02
1985.txcntblack.corn 3.61000000000000E+02
1985.txcntblack.soybeans 1.70000000000000E+01
1985.txcntblack.wheat 1.17500000000000E+03
1985.txcntblack.sorghum 8.61000000000000E+02
1985.txeast.corn 4.30000000000000E+01
1985.txeast.soybeans 2.00000000000000E+01
1985.txeast.wheat 1.29000000000000E+02
1985.txeast.sorghum 2.50000000000000E+01
1985.txedplat.corn 2.80000000000000E+01
1985.txedplat.soybeans 1.00000000000000E+00
1985.txedplat.wheat 1.28000000000000E+02
1985.txedplat.sorghum 8.70000000000000E+01
1985.txsouth.corn 2.16000000000000E+02
1985.txsouth.wheat 9.30000000000000E+01
1985.txsouth.sorghum 5.91000000000000E+02
1985.txtranspec.wheat 6.00000000000000E+00
1985.txtranspec.sorghum 8.00000000000000E+00
1986.txhiplains.corn 4.67000000000000E+02
1986.txhiplains.soybeans 5.60000000000000E+01
1986.txhiplains.wheat 2.34000000000000E+03
1986.txhiplains.sorghum 1.46800000000000E+03
1986.txrolingpl.corn 5.00000000000000E+00
1986.txrolingpl.wheat 1.40000000000000E+03
1986.txrolingpl.sorghum 2.49000000000000E+02
1986.txcntblack.corn 4.03000000000000E+02
1986.txcntblack.soybeans 2.60000000000000E+01
1986.txcntblack.wheat 8.45000000000000E+02
1986.txcntblack.sorghum 7.64000000000000E+02
1986.txeast.corn 5.60000000000000E+01
1986.txeast.soybeans 3.20000000000000E+01
1986.txeast.wheat 4.00000000000000E+01
1986.txeast.sorghum 5.10000000000000E+01
1986.txedplat.corn 6.00000000000000E+00
1986.txedplat.wheat 8.20000000000000E+01
1986.txedplat.sorghum 7.90000000000000E+01
1986.txsouth.corn 1.63000000000000E+02
1986.txsouth.wheat 6.70000000000000E+01
1986.txsouth.sorghum 4.76000000000000E+02
1986.txtranspec.wheat 7.00000000000000E+00
1986.txtranspec.sorghum 8.00000000000000E+00
1987.txhiplains.corn 4.12000000000000E+02
1987.txhiplains.soybeans 4.00000000000000E+01
1987.txhiplains.wheat 1.73000000000000E+03
1987.txhiplains.sorghum 8.95000000000000E+02
1987.txrolingpl.corn 3.00000000000000E+00
1987.txrolingpl.wheat 1.11300000000000E+03
1987.txrolingpl.sorghum 1.91000000000000E+02
1987.txcntblack.corn 3.83000000000000E+02
1987.txcntblack.soybeans 3.10000000000000E+01
1987.txcntblack.wheat 5.52000000000000E+02
1987.txcntblack.sorghum 6.07000000000000E+02
1987.txeast.corn 3.00000000000000E+01
1987.txeast.soybeans 2.10000000000000E+01
1987.txeast.wheat 4.30000000000000E+01
1987.txeast.sorghum 3.60000000000000E+01
1987.txedplat.corn 3.00000000000000E+00
1987.txedplat.wheat 8.70000000000000E+01
1987.txedplat.sorghum 6.80000000000000E+01
1987.txsouth.corn 1.70000000000000E+02
1987.txsouth.wheat 6.30000000000000E+01
1987.txsouth.sorghum 3.61000000000000E+02

17-49

1987.txtranspec.wheat 3.00000000000000E+00
1987.txtranspec.sorghum 8.00000000000000E+00
1988.txhiplains.corn 4.23000000000000E+02
1988.txhiplains.soybeans 6.10000000000000E+01
1988.txhiplains.wheat 1.47200000000000E+03
1988.txhiplains.sorghum 6.68000000000000E+02
1988.txrolingpl.corn 3.00000000000000E+00
1988.txrolingpl.wheat 9.30000000000000E+02
1988.txrolingpl.sorghum 1.23000000000000E+02
1988.txcntblack.corn 3.92000000000000E+02
1988.txcntblack.soybeans 2.50000000000000E+01
1988.txcntblack.wheat 6.29000000000000E+02
1988.txcntblack.sorghum 4.99000000000000E+02
1988.txeast.corn 3.60000000000000E+01
1988.txeast.soybeans 3.10000000000000E+01
1988.txeast.wheat 4.50000000000000E+01
1988.txeast.sorghum 2.10000000000000E+01
1988.txedplat.corn 3.00000000000000E+00
1988.txedplat.wheat 5.80000000000000E+01
1988.txedplat.sorghum 5.60000000000000E+01
1988.txsouth.corn 2.22000000000000E+02
1988.txsouth.wheat 5.40000000000000E+01
1988.txsouth.sorghum 2.82000000000000E+02
1988.txtranspec.wheat 3.00000000000000E+00
1988.txtranspec.sorghum 9.00000000000000E+00
1989.txhiplains.corn 5.92000000000000E+02
1989.txhiplains.soybeans 1.78000000000000E+02
1989.txhiplains.wheat 7.48000000000000E+02
1989.txhiplains.sorghum 1.20800000000000E+03
1989.txrolingpl.corn 3.00000000000000E+00
1989.txrolingpl.wheat 1.22500000000000E+03
1989.txrolingpl.sorghum 1.32000000000000E+02
1989.txcntblack.corn 3.69000000000000E+02
1989.txcntblack.soybeans 4.90000000000000E+01
1989.txcntblack.wheat 7.74000000000000E+02
1989.txcntblack.sorghum 6.43000000000000E+02
1989.txeast.corn 3.60000000000000E+01
1989.txeast.soybeans 4.20000000000000E+01
1989.txeast.wheat 5.50000000000000E+01
1989.txeast.sorghum 3.00000000000000E+01
1989.txedplat.corn 3.00000000000000E+00
1989.txedplat.wheat 1.21000000000000E+02
1989.txedplat.sorghum 6.30000000000000E+01
1989.txsouth.corn 1.82000000000000E+02
1989.txsouth.soybeans 5.00000000000000E+00
1989.txsouth.wheat 6.60000000000000E+01
1989.txsouth.sorghum 3.08000000000000E+02
1989.txtranspec.wheat 2.00000000000000E+00
1989.txtranspec.sorghum 2.00000000000000E+00
1990.txhiplains.corn 6.21000000000000E+02
1990.txhiplains.soybeans 2.80000000000000E+01
1990.txhiplains.wheat 1.73600000000000E+03
1990.txhiplains.sorghum 6.62000000000000E+02
1990.txrolingpl.corn 7.00000000000000E+00
1990.txrolingpl.wheat 1.35400000000000E+03
1990.txrolingpl.sorghum 1.26000000000000E+02
1990.txcntblack.corn 3.63000000000000E+02
1990.txcntblack.soybeans 4.40000000000000E+01
1990.txcntblack.wheat 8.33000000000000E+02
1990.txcntblack.sorghum 6.45000000000000E+02
1990.txeast.corn 3.40000000000000E+01
1990.txeast.soybeans 3.40000000000000E+01
1990.txeast.wheat 5.30000000000000E+01
1990.txeast.sorghum 2.30000000000000E+01
1990.txedplat.corn 3.00000000000000E+00
1990.txedplat.wheat 1.27000000000000E+02
1990.txedplat.sorghum 6.30000000000000E+01

17-50

1990.txsouth.corn 2.30000000000000E+02
1990.txsouth.soybeans 2.00000000000000E+00
1990.txsouth.wheat 8.30000000000000E+01
1990.txsouth.sorghum 3.67000000000000E+02
1991.txhiplains.corn 6.42000000000000E+02
1991.txhiplains.soybeans 2.40000000000000E+01
1991.txhiplains.wheat 1.15700000000000E+03
1991.txhiplains.sorghum 7.38000000000000E+02
1991.txrolingpl.corn 7.00000000000000E+00
1991.txrolingpl.wheat 9.03000000000000E+02
1991.txrolingpl.sorghum 1.41000000000000E+02
1991.txcntblack.corn 3.75000000000000E+02
1991.txcntblack.soybeans 3.80000000000000E+01
1991.txcntblack.wheat 5.56000000000000E+02
1991.txcntblack.sorghum 7.20000000000000E+02
1991.txeast.corn 3.50000000000000E+01
1991.txeast.soybeans 2.90000000000000E+01
1991.txeast.wheat 3.50000000000000E+01
1991.txeast.sorghum 2.60000000000000E+01
1991.txedplat.corn 3.00000000000000E+00
1991.txedplat.wheat 8.50000000000000E+01
1991.txedplat.sorghum 7.00000000000000E+01
1991.txsouth.corn 2.38000000000000E+02
1991.txsouth.soybeans 2.00000000000000E+00
1991.txsouth.wheat 5.60000000000000E+01
1991.txsouth.sorghum 4.09000000000000E+02
1991.txtranspec.sorghum 1.00000000000000E+00
1992.txhiplains.corn 6.94000000000000E+02
1992.txhiplains.soybeans 5.60000000000000E+01
1992.txhiplains.wheat 1.57100000000000E+03
1992.txhiplains.sorghum 1.14600000000000E+03
1992.txrolingpl.corn 8.00000000000000E+00
1992.txrolingpl.wheat 1.22500000000000E+03
1992.txrolingpl.sorghum 2.18000000000000E+02
1992.txcntblack.corn 4.05000000000000E+02
1992.txcntblack.soybeans 8.70000000000000E+01
1992.txcntblack.wheat 7.54000000000000E+02
1992.txcntblack.sorghum 1.11700000000000E+03
1992.txeast.corn 3.80000000000000E+01
1992.txeast.soybeans 6.60000000000000E+01
1992.txeast.wheat 4.80000000000000E+01
1992.txeast.sorghum 4.00000000000000E+01
1992.txedplat.corn 3.00000000000000E+00
1992.txedplat.soybeans 2.00000000000000E+00
1992.txedplat.wheat 1.15000000000000E+02
1992.txedplat.sorghum 1.09000000000000E+02
1992.txsouth.corn 2.57000000000000E+02
1992.txsouth.soybeans 4.00000000000000E+00
1992.txsouth.wheat 7.60000000000000E+01
1992.txsouth.sorghum 6.35000000000000E+02
1992.txtranspec.sorghum 2.00000000000000E+00

18-1

Chapter 18 Features to watch out for

There are a number of GAMS peculiarities that cause problems for users. In this chapter

we present brief examples of each and cross-references treatments in other areas in the text.

18.1 Dynamic vs static calculations --What is and is not recomputed

As discussed in section 13.1.2 the dynamic/static nature of calculations can cause problems.

Here we will elaborate on the points in that section. In GAMS a dynamic calculation is done every

time a SOLVE statement is executed and is limited to the calculations contained in the equation

specification statements (those with the .. syntax). All other calculations are done only at the stage

in the code where they appear -- they are not automatically repeated when the input data defining

them changes. GAMS does not contain any mechanism to make a calculation dynamic and this can

coupled with user frailties (some of us forget to recompute items when data are changed) can

cause problems.

To illustrate this point we introduce an example - table 18.1 (nondyn.gms) - which has non

dynamic calculations in lines 16, 17 and 18, which define model data. Therein the parameter “C”

is calculated in line 16 is used in defining the objective function value in line 20 while the upper

bounds calculated in line 18 are used whenever the model is solved. Now suppose we also set up

an alternative version of the model in lines 21 through 23, wherein the calculation of the sum

placed into “C” is embedded in objective function and the bounds are explicitly included as

constraints. We then set up two versions of the model in lines 24 and 25 both of which should be

the same. We solve the two models in lines 28 and 31 an use a report writing feature in lines 29

and 30 to save the solution. Both models at this stage yield the same solution.

Now come the problem. Suppose we then revise the data used in the calculation of “c” and

the upper bounds. We do this in lines 35 and 36 and resolve the models. The resultant solutions

18-2

are

---- 49 PARAMETER SOL
 trybefore try2before tryafter try2after tryafterc~
x1 1000.000 1000.000 1000.000 89.000 89.000
x2 2000.000 2000.000 2000.000 2000.000 2000.000
x3 3000.000 3000.000 3000.000 3000.000 3000.000

z 42000.000 42000.000 42000.000 1825623.000 1825623.000

Notice that the try model solution from before and after the data change is no different, whereas

the try2 model gives differing solutions. Why? This occurs because the “C” and bounds

calculations are automatically updated sice they appear in the equation specification in try2 but are

not altered when try is solved. In fact the only way we can get the try model to change solution is

by repeating the calculations after the data have been manipulated as in lines 43-45, then re

solving.

Is this a GAMS bug? No it is not. Rather one must recognize that whenever calculated

parameters are used in a model that one must be careful to update their calculations whenever their

input data are altered. It also indicates that GAMS does not treat bounds in a parallel manner with

the rest of models. Namely, the bound calculations are not dynamic and are not done whenever

the model is set up, rather they are only done at the time the bound definition is executed. This

leads the author to frequently include the bounds as equations to avoid such difficulties and let the

presolve routines in OSL and CPLEX convert them into bounds. It would be nice if the GAMS

developers included a dynamic calculation definition mechanism (which has been under discussion

for years).

18.2 Fully omitted variables that won’t leave

Another GAMS feature which causes difficulties and is more like a bug involves the

possibility that a variable that is supposed to be eliminated by conditionals hangs around in the

solution. There are actually two variants to this problem which are intertwined with the

18-3

SOLVEOPT option.

Consider the example in table 18.2. Here we set up a problem with six variables. Also

note that the variables are conditionally present in the model, dependent on the values of limit and

limit2. We then solve the model. Later, in lines 25 and 26, we set the limits down to zero on the

variable, thus eliminating the variables and solve the model again. Also note that we introduce a

report in lines 22 through 24, 28 through 30 and throughout the rest the code that stores the

variables values.

Now, let’s the table of solutions displayed in line 43.

---- 43 PARAMETER SOL
 trybefore tryaft tryaftrep tryaftrep2
z .z 6.000 2.000 2.000 2.000
variablval.x1 1.000 1.000
variablval.x2 1.000 1.000 1.000 1.000
variablval.x3 1.000 1.000 1.000 1.000
secondvar .x1 1.000 1.000 1.000
secondvar .x2 1.000 1.000 1.000
secondvar .x3 1.000 1.000 1.000

Here note that in the first solve (trybefore) shows all six variables present, the objective function

which is the sum of all the variables is equal to six. We then solve the second problem and here

notice this is called tryafter in our solution table. Here the objective function equals two indicating

that at optimality there are only two variables in solution, the model setup statistics also indicate

that there are only two variables. But, now the problem, the solution summary table shows all six

variables are nonzero. Why? GAMS contains a parameter called solveopt which tells it whether

to merge a current solution in with a previously stored solution or replace that solution. By default

the solution is merged and what happens is the value of the variables that were eliminated are

retained from the last solve. GAMS does provide a provision to change this merge option, namely

we can utilize the syntax in line 33 and tell it we are going to replace our solution.

But yet another problem occurs. When we solve now we get the solution labeled tryaftrep.

Again the model has two variables, but the solution report has five. This reflects what we believe

18-4

is a bug in GAMS. Namely, under the replace option, when a variable is completely eliminated

from the model its old solution values are still retained even under the REPLACE option. Notice

however in the case of the variable variablval(“x1") this is not a problem as it is only involved with

a partially eliminated variable and is rewritten to be zero. The only way we have found to fix this

is for any variable that may be fully eliminated by conditionals is to insert a statement like line 38

where we manually zero the values. After this modification our report writing is finally right with

just two variables present.

This illustrates then two general points. People who are doing repeated solves with items

in loops as well as for use in basis for the GAMS base but then eliminating the variables, will need

to carefully manage the variables other wise any report writing statements may have old variable

values in them. A lack of attention to this may lead to one explaining to a modeling client why the

implications of an omitted variable still appear in the model reports. (once the author eliminated a

land transfer via conditionals in a looped solve sequence but the client found the solution report

still showing land transfers) The way to manage is two fold, first in repeated solves always use the

merge option. (The merge option exists because one might want to recursively solve for different

time periods and not eliminate the solution from the earlier time period.) Furthermore if a all cases

of a variable can be fully eliminated you need to zero out the variable levels. The problem is also

exhibited for variable marginals.

Note the replace problem also exists for equations. In particular the shadow prices and

levels on equations will remain for omitted equations if the merge option is active. However, the

equations can freely be eliminated and they will disappear from the solution when replace is active

(as the more extensive wontleav.gms file on the disk indicates).

The author thinks that GAMS corporation should undertake two code additions to correct

18-5

this problem. First, a parameter file entry should be allowed that sets the program to for now

default to the REPLACE option rather than MERGE. Second, a new option called OVERWRITE

should be defined which will zero out the marginals and levels for all variables which appear in any

equation associated with a model even if they are removed by a conditional.

18.3 Partially omitted variables that stay

Conditionally omitted variables can be a problem in another way. In particular, when one

tries to omit a variable using conditionals, but does not have the exact same conditional

everywhere in the model, then the variable may be retained in the solution. This is illustrated with

examples in section 13.1.5 and will not be repeated here. The general lesson is that when a

variable is to be conditionally eliminated from the model one must make sure one has the same

conditional everywhere. This may mean that it is desirable in the case of complicated conditionals

to calculate a set which indicates when the variable is present and then condition on that set or sum

over a tuple involving that set. For additional details refer to the coverage in section 13.1.5.

This is not a GAMS bug but rather a modeler oversight. GAMS could again help the user

by providing a mechanism via which variables could be either activated or deactivated everywhere.

This can currently de done by fixing variables at zero but that while effective leads to larger than

necessary models.

18.4 Phantom Sums

One of the other problems that one must be careful of is the phantom sum problem.

Namely, these authors have on more than one occasion made a mistake of summing over an item

using an index which is not represented in that sum, which in effect multiplies the result by a

constant. This is covered in section13.1.3, and one should make sure that the sets referenced by a

sum appear somewhere within each term in the parentheses defining the sum.

18-6

This is again a modeler problem. It may be possible for GAMS to issue warnings when

such sums are done.

18.5 Cumulative Data Changes

When solving in loops particularly using the procedures described in chapter seventeen, one

needs to be careful to avoid cumulative data changes. In particular consider the example in table

18.3. There the parameter “limit” is changed during the loop, being multiplied by one under the

first case, two under the second, and four under the third. However, while line 23 is deactivated

the value of limit after line 24 is the value of the limit that preexisted after each go through of the

loop. In this particular case what happens is the original value of limits is multiply by one in the

first place, two in the second case, and effectively eight in the third case. This is reflected in the

following small solution table, where note the variable values are cumulative.

---- 29 PARAMETER SOL
 case1 case2 case3
x1 1.000 2.000 8.000
x2 1.000 2.000 8.000
x3 1.000 2.000 8.000
z 3.000 6.000 24.000

On the other hand if we activate line 23 then the solution table becomes as follows,

---- 29 PARAMETER SOL
 case1 case2 case3
x1 1.000 2.000 4.000
x2 1.000 2.000 4.000
x3 1.000 2.000 4.000
z 3.000 6.000 12.000

The lesson is that one needs to be careful to reset the data particularly in a loop, unless one

wants cumulative changes. More is discussed on this in Chapter 17. This phenomenon is not only

relevant to loops, but rather if data are changed anywhere they are changed permanently and can

only return the original values, if they are reset using a statement like line 23.

This is clearly a modeling problem and does not merit any action by the GAMS developers.

18.6 Memory Hogs

18-7

One can if one is not careful create the GAMS memory hogs. This occurs when one does

not carefully manage all the possible index set combinations for an item. In turn a lot of irrelevant

terms or variables or parameters are considered as discussed in chapter 10 particularly in section

10.2.1. One also must be careful with this in respect to bounds and scaling to make sure that these

items are only defined for realistic items

Again no action by GAMS is mandated toward this item.

18.7 Bases in repeated solutions

A problem occasionally crops up involving an advanced basis in a repeated solution. In

particular, if one is making fairly radical changes between alternative solves, then some form of

advanced basis management may be necessary in order to make the solver work correctly. This is

discussed in section 11.3.

18.8 Terms that should not be there

GAMS can define irrelevant terms during a model that the modeler does not feel should be

present. One needs to be careful to use conditionals and to manage the variables that are present

as discussed in sections 10.2.1 and 13.1.4.

18-8

Table 18.1 Example of Non-dynamic Calculations

 1 set varname /x1,x2,x3/
 2 set scalefac(varname) scaling factors
 3 /x1 1000,x2 500,x3 250/
 4 parameter limit(varname) /x1 1000,x2 2000,x3 3000/
 5 set sumitem items to sum over /1*3/
 6 table sumdata(sumitem,varname)
 7 x1 x2 x3
 8 1 4 4 5
 9 2 3 3 2;
 10 variable z obj var
 11 positive variables variablval(varname) variable values;
 12 equations obj objective function
 13 obj2 alternative objective function
 14 bound(varname) bounds via equations;
 15 parameter c(varname) variable objective function coeficients;
 16 c(varname)=sum(sumitem,sumdata(sumitem,varname));
 17 variablval.scale(varname)=scalefac(varname);
 18 variablval.up(varname)=limit(varname);
 19 option lp=bdmlp;
 20 obj.. z=e=sum(varname,c(varname)*variablval(varname));
 21 obj2.. z=e=sum(varname,sum(sumitem,sumdata(sumitem,varname)
 22 *variablval(varname)));
 23 bound(varname).. variablval(varname)=l=limit(varname);
 24 model try /obj/
 25 model try2 /obj2,bound/
 26 option solprint=off;
 27 parameter sol(*,*);
 28 solve try using lp maximizing z;
 29 sol("z","trybefore")=z.l;
 30 sol(varname,"trybefore")=variablval.l(varname);
 31 solve try2 using lp maximizing z;
 32 sol("z","try2before")=z.l;
 33 sol(varname,"try2before")=variablval.l(varname);
 34 scalefac('x1')=100;
 35 limit('x1')=89;
 36 sumdata('2','x2')=898;
 37 solve try using lp maximizing z;
 38 sol("z","tryafter")=z.l;
 39 sol(varname,"tryafter")=variablval.l(varname);
 40 solve try2 using lp maximizing z;
 41 sol("z","try2after")=z.l;
 42 sol(varname,"try2after")=variablval.l(varname);
 43 c(varname)=sum(sumitem,sumdata(sumitem,varname));
 44 variablval.scale(varname)=scalefac(varname);
 45 variablval.up(varname)=limit(varname);
 46 solve try using lp maximizing z;
 47 sol("z","tryaftercal")=z.l;
 48 sol(varname,"tryaftercal")=variablval.l(varname);
 49 display sol;

18-9

Table 18.2 Example of the variable that Would Not Leave

 1 option limrow=0
 2 option limcol=0;
 4 set varname /x1,x2,x3/
 5 parameter limit(varname) /x1 2, x2 2, x3 2/
 6 limit2(varname) /x1 1 , x2 1, x3 1/
 7 variable z obj var
 8 positive variables variablval(varname) variable values
 9 secondvar(varname) other variables;
 10 equations obj objective function
 11 bound2(varname) bounds on secondvar
 12 bound(varname) bounds via equations;
 13 option lp=bdmlp;
 14 obj.. z=e=sum(varname,variablval(varname)$limit(varname)
 15 +secondvar(varname)$limit2(varname));
 16 bound(varname)$limit(varname).. variablval(varname)=l=limit(varname);
 17 bound2(varname)$limit2(varname).. secondvar(varname)=l=limit2(varname);
 18 model try /all/
 19 *option solprint=off;
 20 parameter sol(*,*,*);
 21 solve try using lp maximizing z;
 22 sol("z","z","trybefore")=z.l;
 23 sol("variablval",varname,"trybefore")=variablval.l(varname);
 24 sol("secondvar",varname,"trybefore")=secondvar.l(varname);
 25 limit2(varname)=0;
 26 limit('x1')=0;
 27 solve try using lp maximizing z;
 28 sol("z","z","tryaft")=z.l;
 29 sol("variablval",varname,"tryaft")=variablval.l(varname);
 30 sol("secondvar",varname,"tryaft")=secondvar.l(varname);
 31 display variablval.l;
 32 display secondvar.l;
 33 option solveopt=replace
 34 solve try using lp maximizing z;
 35 sol("z","z","tryaftrep")=z.l;
 36 sol("variablval",varname,"tryaftrep")=variablval.l(varname);
 37 sol("secondvar",varname,"tryaftrep")=secondvar.l(varname);
 38 secondvar.l(varname)=0;
 39 solve try using lp maximizing z;
 40 sol("z","z","tryaftrep2")=z.l;
 41 sol("variablval",varname,"tryaftrep2")=variablval.l(varname);
 42 sol("secondvar",varname,"tryaftrep2")=secondvar.l(varname);
 43 display sol;

18-10

Table 18.3 Example of Cumulative Data Changes in a Loop

 1 option limrow=0
 2 option limcol=0;
 4 set varname /x1,x2,x3/
 5 parameter limit(varname) /x1 1, x2 1, x3 1/
 6 variable z obj var
 7 positive variables variablval(varname) variable values;
 8 equations obj objective function
 9 bound(varname) bounds on var;
 10 option lp=bdmlp;
 11 obj.. z=e=sum(varname,variablval(varname)$limit(varname));
 12 bound(varname)$limit(varname)..
 13 variablval(varname)=l=limit(varname);
 14 model try /all/
 15 *option solprint=off;
 16 parameter sol(*,*);
 17 set loopover /case1,case2,case3/
 18 parameter valuesto(loopover)
 19 /case1 1, case2 2, case3 4/
 20 parameter slimit(varname) saved values of limit;
 21 slimit(varname)=limit(varname);
 22 loop(loopover,
 23 * limit(varname)=slimit(varname);
 24 limit(varname)=limit(varname)*valuesto(loopover);
 25 solve try using lp maximizing z;
 26 display limit;
 27 sol("z",loopover)=z.l;
 28 sol(varname,loopover)=variablval.l(varname);)
 29 display sol;

18-10

Ref-1

References

Brooke, A., D. Kendrick, and A. Meeraus. GAMS: A User's Guide. Boyd and Fraser Publishers,
Version 2.25, 1993.

Dillon, M., "Heuristic Selection of Advanced Bases for a Class of Linear Programming Models,"
Operations Research, 18(1970):90-100.

GAMS Development Corporation. "Sensitivity Analysis with GAMS/CPLEX and GAMS/OSL."
Washington, DC, 1993.

GAMS Development Corporation. "Guide to the 'Put' Writing Facility." Washington, DC, 1990.

Greenberg, H.J. "A Primer for ANALYZE(c): A Computer-Assisted Analysis System for
Mathematical Programming Models and Solutions." Mathematics Department, University
of Colorado at Denver, Denver, CO, February 1991.

Kutcher, G. and A. Meeraus, "Computational Considerations for Sectoral Programming Models,"
in The Book of CHAC: Programming Studies for Mexican Agriculture. R. Norton and L.
Solis, (Eds.), Johns Hopkins Press for the World Bank, 1983.

Luenberger, D., Introduction to Linear and Nonlinear Programming, Addison Wesley, 1973.

McCarl, B.A. "GAMSCHECK USER DOCUMENTATION: A System for Examining the
Structure and Solution Properties of Linear Programming Problems Solved using GAMS."
Working Documentation, Department of Agricultural Economics, Texas A&M University,
1994.

McCarl, B.A. "Degeneracy, Duality and Shadow prices in Linear Programming," Canadian Journal
of Agricultural Economics, 25(1977):70-73.

McCarl, B.A., W.V. Candler, D.H. Doster and P. Robbins, "Experiences with Farmer Oriented
Linear Programming for Crop Planning," Canadian Journal of Agricultural Economics,
25(1977):17-30.

McCarl, B.A. and P. Nuthall, "Linear Programming for Repeated use in the Analysis of
Agricultural Systems," Agricultural Systems, 8(1982):17-39.

Optimization Subroutine Library (OSL). IBM Guide and Reference, Release 2. Ed. J.A. George
and J.W.H. Liu. IBM Corporation, 1990-91.

Orchard-Hays, W., Advanced Linear-Programming Computing Techniques, McGraw-Hill Book
Company, 1968.

Williams, H., Model Building in Mathematical Programming, John Wiley & Sons, 1978.

Appendix I-1

Appendix I - Good GAMS modeling practices

There are a number of practices which may be followed which improve readability, and

documentation of GAMS models. These notes discuss those practices. The topics of discussion

involve naming conventions, setting up data, set specification, typing, indexing and conditionals.

I.1 Naming Conventions

The full benefit of GAMS use is not realized unless one includes explanatory names and

labels for items. Development of variables of the form

"X(A,B,C)"

is vastly inferior to a potentially equivalent label like

"PRODUCTION (PLANT, ITEMS, PROCESS).

Furthermore, when specifying sets, set elements, data items, variables etc., one should take

advantage of the up to 80 character names which can be entered. Modelers should include

descriptions of the nature and units of data items and set elements. Such naming practices allow

the models to be easily read and utilized by the author at a later time or by others. Not following

such practices generally makes it difficult for even the modeler to go back and discover what was

done at an earlier stage.

I.2 Setting up Data

 Modelers should, to the extent possible, put in raw data and then compute model data

requirements. GAMS has calculation procedures which allows subsequent data to be derived. For

example, transportation costs are commonly estimated by applying a rate function to the distance

traveled. In such a case the rate function and the distance should be entered rather than the result

of external cost calculations. This allows calculations to be revised at a future time and documents

assumptions as part of the permanent model record. Longer names should be used for data items

 c Generally, the number of sets should be small, but to the point where the model is easy to
explain and not cumbersome to work with.

Appendix I-2

with explanations entered for data sources. Explanatory comments should be entered using either

an asterisk for one line comments or the $ONTEXT/OFFTEXT syntax.

I.3 Specification of Sets

Often GAMS modelers need to decide when to use a single versus multiple sets. Sets are

used to address a family of similar items. There are cases when it is convenient to have something

in such a family and cases when it is not. These authors err on the side of being more extensive

with set definitions. For example, in the GAMS Note 3, resource allocation problem in we prefer

the second formulation where the process set refers to the three potential production methods

without reference to the chair type as in the first formulation. Thus, we believe that sets should

contain items treated similarly in the problem (i.e., resources like fertilizer, seed, and energy), but

when there are two items crossed (i.e., monthly availability of land, labor, and water involves

month and reserve) one should have two sets.c However GAMS is limited to ten set indices for

any particular item.

One other set definition consideration involves the use of subsets. Sometimes it is desirable

to have items which can be treated simultaneously in some places, but separately elsewhere. For

example, when entering crop budgets one might wish to enter yield along with usage of inputs,

land, labor, and water, in one spot yet treat those differently elsewhere (i.e., where variable inputs

might be in one equation, yield balance in another, with water and labor availability in yet a third

and fourth equation). In this case, the strategy that the authors have pursued involves the uses of

subsets. In particular, in the ASM Sector Model (Chang, et al.) the authors have defined a set

called ALLI and in that set are all data items for a crop budget. Subsequently, subsets of ALLI are

defined which identify the yield item, input, and resources, etc. The example in Table XIV.1

Appendix I-3

shows such a case. Note how after the data references appear to subsets where commodities,

inputs and resources are indexed. This mechanism allows one to both organize the input and then

deal with it efficiently in the model and report writer statements.

I.4 Typing of GAMS Models

GAMS models are submitted in the form of an ASCII file. Models can format such files to

improve model readability. We recommend entering the model in a fixed order. Generally, we put

the data related sets first, followed by data definitions organized by class of parameters and/or type

of data. For example, all the data related to transportation includes all tables, parameters, and

scalers would be together followed by any calculations on those parameters. Third, we introduce

variable and equation definitions. Fourth, the individual equations should be defined algebraically.

Fifth, the model and solve. Finally, report writing statements should appear.

We also recommend that the input be formatted so that it is visually easy to follow. For

example, one should align set names, set descriptions and set element definitions. Also when

entering the equation ("..") specifications one should indent and use spaces to improve readability.

Namely, when one does a sum one should indents the algebraic expression underneath that.

These practices are in the following example in Table XIV.1. Note how the names, labels

and data are aligned. Also note the spacing on the SUMS showing where they begin and end.

It is also good practice to not split variables between lines in equations, but rather to keep

them together with all their index positions. One can also use indenting in conjunction with the

loops to know where the loop begins and ends.

Another element of good GAMS practice involves use of sets, calculations and complex

dollar sign specifications. It is highly desirable to make sure that GAMS only executes over valid

combinations of set indices. The absence of a global condition on definition of variables (i.e., the

 d Such a modification reduced run time for a report writer from 2 hours to 10 minutes..

Appendix I-4

ability to enter a global dollar sign defining when a variable exists) means that in a number of

models one has to repeatedly includes a condition identifying whether a variable exists. This can

make for long expressions. Often, it is desirable to introduce avoid cumbersome notation by

computing a parameter called something like "ISEXIST" which is nonzero when a variable should

be defined and then including a dollar sign conditions on it throughout the remainder of the

program (see Table IV.2). In this way cumbersome algebraic statements are avoided. Also, this

speeds up execution as repeated calculations are not needed.

I.5 Subscript Ordering

One can speed up GAMS execution time. Models with items defined over several sets

which have lots of members can be quite slow in performance. The use of $ conditions in such

models is essential. For example the report writing equation

Y=SUM((A,B,C,D,E,F,G), (DATA(A)+IT(B,C)+Y(D,E)+W(F,G))*X.L(A,B,C,D,E,F,G))

will perform much faster with the addition of a $ condition as follows

Y=SUM((A,B,C,D,E,F,G)$X.L(A,B,C,D,E,F,G),

This will result in the calculation only being done when nonzero solution values for X are

involved and will avoid excess work.d The ordering of subscripts is also important where the data

arrays should be referenced in an order consistent with their definition. For example, summing the

above in the order F,D,A,C,E,B,G would be much slower. One should compute intermediate

products to avoid repetitive, complex calculations (i.e., one could add the DATA and IT items into

another parameter ahead of time). GAMS also gives help in reporting particularly slow statements.

During execution a report appears on the screen giving the line being executed and one can

observe progress making notes of statements which are computed for a long time to see if they can

 e This is invoked by including the lane OPTION PROFILE=1 or including PROFILE=1 on
the GAMS call.

Appendix I-5

be streamlined. Also one may use the undocumented PROFILE option which produces a report

of the time spent on code segmentse.

I.6 Minimizing Model Size

GAMS can generate very large problems when models contain a lot of sets with a lot of

elements. The statements above on speeding up GAMS are also relevant when setting up models.

It is usually highly desirable to define $ conditions on equations and the sums leading to generation

of variables to avoid unneeded model features.

Appendix II-1

Appendix II: SUMMATION NOTATION and GAMS

Summation notation is difficult for some students to use and follow. Here we present notes

on the mechanics of summation notation usage and some rules for proper use. This discussion is

cast within the GAMS framework with presentation equivalents of common summation

expressions and error messages caused by improper summation. All of the GAMS statements used

herein are shown in Table 1 and are in file NOTATION.

II.1 Summation Mechanics

Summation notation is a short hand way of expressing sums of algebraic terms involving

subscripted items. In order to cover the mechanics of summation notation it is useful to have a set

of subscripted items and associated numerical values. Thus, let us define some data

x1 = 1 y11 = 2 y12 = 3

x2 = 2 y21 = 4 y22 = 1

x3 = 3 y31 = 1 y32 = 4.

Now let us define a variety of summation expressions.

II.1.1 Sum of an Item

Suppose we wished to sum all values of x. This would be written as

 = 1 + 2 + 3 = 6'3
i'1

xi ' x1 % x2 %x3

or in GAMS

SUM1 = SUM(I, X(I));

For short hand purposes if i was to be summed over all possible values, we would write this as

.'
i

xi

Appendix II-2

We might also express a sum as follows which indicates all of the i are summed over except i=3

.'
i

i…3

xi ' 3

In GAMS, this is more difficult to express where one has to write a conditional ($) operation or

define a subset as follows

SUM1 = SUM(I$(ORD(I.NE.3)), X(I));

or

SET SUBSETI(I) /1, 2/;

SUM1 = SUM(SUBSETI, X(SUBSETI(I));

II.1.2 Multiple Sums

Sums over two indices consider all combinations of those items

 yij = y11 + y12 + y21 + y22 + y31 + y32 = 15.'
i
'
j

The equivalent GAMS expression is

SUM2 = SUM((I,J), Y(I,J));

II.1.3 Sum of Two Items

Suppose we wished to sum over two items completely where they shared a subscript

'3
i'1

(xi % '2
j'1

yij) ' '
i

(xi % '
j

yij) ' '
i

xi % '
i
'
j

yij

= x1 + y11 + y12 + x2 + y21 + y22 + x3 + y31 + y32 = 21.

The equivalent GAMS expression is as follows

SUM3 = SUM(I, X(I)+SUM(J, Y(I, J));

or

SUM3 = SUM(I, X(I)) + SUM((I,J), Y(I,J));

Appendix II-3

B1 ' '
i
'
j
'
k

pijk % '
m
'
n

qmn.

On the other hand, if we wished to sum the results only for the ith element and call it Ai then

Ai ' xi % '
j

yij ' xi % yi1 % yi2

or in GAMS

A(I) = X(I) + SUM(J, Y(I,J));

which would yield a vector [6 , 7 , 8] of results.

Sums over common subscripts can be collapsed or taken apart

'
i

(xi % zi) ' '
i

xi % '
i

zi

or

SUM4 = SUM(I, X(I) +Z(I));

or

SUM4 = SUM(I, X(I)) + SUM(I, Z(I));

II.2 Summation Notation Rules

Certain rules apply when writing summation notation equations. The applicable rules

depend on whether the final result is an unsubscripted scalar or a subscripted family of results

determined by multiple equations.

II.2.1 For a Scaler Equation

All subscripts must be dealt with in each term. Thus, it is proper to define the equation

Appendix II-4

However, the following equations are wrong

B2 ' pijk % qmn

B3 ' '
j
'
i

pijk % '
m
'
n

qmn.

In the case of the first equation, the result would really have the subscripts i,j,k,m,n,

while the second equation result would have to have a k subscript on B3 or a sum over k to be

proper. Equivalent GAMS commands for the above equation expressions are

EQB1.. B1 =E= SUM((I,J,K),P(I,J,K)) + SUM((M,N), Q(M,N));

EQB2.. B2 =E= P(I,J,K) + Q(M,N);

EQB3.. B3 =E= SUM((I,J), P(I,J,K)) + SUM((M,N), Q(M,N));

Here, the first equation expression is correct, while the last two equation expressions are incorrect.

If you run GAMS with the above commands, you would encounter GAMS error messages $149

which says "UNCONTROLLED SET ENTERED AS CONSTANT" meaning that you have not

somehow dealt with all the subscripts in the equation.

II.2.2 For a Family of Equations

Several rules apply when one is working with a family of equations.

1. The members of the family must be specified with an indication of the subscripts

which define each equation. This is done by indicating all the conditions for which

the equations exist in a "for" condition.

For example, suppose we define an equation which sets all C's equal to

2. This is done by saying

Ci = 2 for all i or Ci = 2 for i = 1,2, ... n.

Appendix II-5

Similarly, if we wish to set a 2 dimensional variable equal to a constant, we would

state

Dij = 2 for all i and j,

while stating that for each row of the matrix Eij we have the same values Fi is

defined by

E1ij = Fi for all i and j.

The equivalent GAMS commands for the above expressions are

EQUATIONS
EQC(I) EQUATION C
EQD(I,J) EQUATION D
EQE1(I,J) EQUATION E1;
EQC(I).. C(I) =E= 2;
EQD(I,J).. D(I,J) =E= 2;
EQE1(I,J).. E1(I,J) =E= F(J);

On the other hand, it is wrong to state

E2ij = 2

without conditions on i and j. The equivalent GAMS commands for the above

incorrect expressions are

EQUATION

EQE2 EQUATION E2;
EQE2.. E2(I,J) =E= 2;

Here you would get error message $149 which says "UNCONTROLLED SET

ENTERED AS CONSTANT."

Appendix II-6

'
j
'
k

pijk ' G1i for all i

'
k

pijk ' H1i for all i and j

2. When writing an equation with a for statement all subscripts which are not in the

for statement must be summed over. Consequently, it is proper to write

but improper to write
pijk ' G2i for all i

'
k

pijk ' H2i for all i.

The equivalent

GAMS commands for the above equations are

EQUATIONS

EQG1(I) EQUATION G1
EQH1(I,J) EQUATION H1
EQG2(I) EQUATION G2
EQH2(I) EQUATION H2;
EQG1(I).. G1(I) =E= SUM((J,K), P(I,J,K));
EQH1(I,J).. H1(I,J) =E= SUM(K, P(I,J,K));
EQG2(I).. G2(I) =E= P(I,J,K);
EQH2(I).. H2(I) =E= SUM(K, P(I,J,K));

in which the first two equations are correct, while the last two equations are wrong and error

messages $149

"UNCONTROLLED SET ENTERED AS CONSTANT"

would again be realized.

Appendix II-7

'
j
'
k

pijk ' L1 for all i

'
j
'
k

rijkm % '
j

sijm ' Nim for all i and m

3. In any term of an equation, the result after executing the mathematical operations in

that term must be of a dimension less than or equal to the family definition in the for

statement. For example, it is proper to write

but wrong to write

pijk = L2 for all i.

Thus, for the following expressions, the first two equations are appropriate but

the last equation would give you error message

 $149 "UNCONTROLLED SET ENTERED AS CONSTANT."

4. When the dimension is less than the family definition this implies the same term appears in

multiple equations. For example, in the equation

2 + pijk + sijm = Oim for all i and m,'
j
'
k

'
j

the 2 term appears in every equation and the sum involving p is common when m varies.

Equivalent GAMS commands are as follows

EQUATION

 EQO(I,M) EQUATION O;

 EQO(I,M).. 2 + SUM((J,K), P(I,J,K)) + SUM(J, S(I,J,M)) =E=

O(I,M);

5. In an equation you can never sum over the parameter that determines the family of

equations. It is certainly wrong to write

 pijk = Wi for all i.'
k
'
j
'
i

Appendix II-8

Or, equivalently, the following expressions are wrong and will result in error

message $125 which says "SET IS UNDER CONTROL ALREADY."

II.2.3 Defining Subscripts

In setting up a set of equations and variables use the following principles.

Define a subscript for each physical phenomena set which has multiple members,

i.e.,

Let i denote production processes of which there are I

 j denote locations of which there are J

k denote products of which there are K

m denote sales locations of which that are M.

Equivalent GAMS commands are

SET I /1*20/

J /1*30/

K /1*5/

M /CHICAGO, BOSTON/;

Define different subscripts when you are either considering subsets of the subscript set or different

physical phenomena.

II.2.4 Defining and Using Variables

1. Define a unique symbol with a subscript for each manipulatable item.

For example:

pijk = production using process i at location j while producing good

k.

Appendix II-9

Or, equivalently,

PARAMETER P(I,J,K)

or

PARAMETER PRODUCTION(PROCESS, LOCATION,

GOOD)

Here, for documentation purposes, the second expression is preferred.

2. Make sure that variable has the same subscript in each place it occurs.

Thus it is proper to write

Max tijk'
i
'
j
'
k

 tijk = 3 for all k'
i
'
j

but wrong to write

Max tij'
i
'
j

 tijk = 3 for all k'
i
'
j

tijk $ 0.

The second model would cause error message $148 indicating "DIMENSION

DIFFERENT."

3. It is bad practice to define different items with the same symbol but varying

subscripts. For example consider the following

uij = amount of tires transported from i to j and

ukj = amount of chickens transported from k to j.

GAMS will not permit this, giving errors like $150 "Symbolic Equations

Redefined."

II.3 Equations

Appendix II-10

Modelers should carefully identify the conditions under which each equation exists and use

subscripts to identify those conditions. We do not think modelers should try to overly compact the

families of equations. For example, it is OK to define

 aij xj # bi for all i,'
j

where aij is use of water by period and labor by period, where i denotes water periods and labor

periods and bi simultaneously contains water and labor availability by period.

But we find it is better to define

 dij xj # ei'
j

 fij xj # hi'
j

where i denotes period,

dij denotes water use and ei water availability,

fij denotes labor use and hi labor availability.

II.4 Cautions and Extensions

1. Be careful when you sum over terms which do not contain the subscript you are

summing over. This is equivalent to multiplying a term by the number of items in

the sum.

 xi = Nxi'N
j'1

'3
j ' 1

X2 ' 3(2) ' 6
Or, in GAMS

SUM5A = SUM(J, X("2"));

2. Be careful when you have a term in a family of equations which is of a lesser

dimension than the family, this term will occur in each equation.

Appendix II-11

For example, the expression

 xj = zi for i = 1,2,3'
j

implies that simultaneously

 xj = z1'
j

 xj = z2'
j

 xj = z3.'
j

3. The same rules as outlined above apply to product cases

 xi = x1*x2*x3.A
3

i'1

Or, equivalently,

 PRODUCTX = PROD(I, X(I));

4. The following relationships also hold for summation

a. '
i

Kxi'K '
i
xi

b. 'n
i'1

KP ' K 'n
i'1

P ' KnP

c. '
i
'
j

(vij%yij) ' '
i
'
j
vij%'

i
'
j
yij

d. '
i
'
j

(xi%yij)' n '
i
xi%'

i
'
j
yij when j ' 1,2,...n

Appendix II-12

Table II.I. Sample GAMS Commands for Summation Notation Expressions

 5
 6 SETS
 7 I /1*3/
 8 J /1*2/
 9 K /1*2/
 10 M /1*2/
 11 N /1*3/
 12
 13 PARAMETERS
 14
 15 X(I) /1 1,2 2,3 3/
 16 Z(I) /1 2,2 4,3 6/
 17
 18 TABLE Y(I,J)
 19
 20 1 2
 21 1 2 3
 22 2 4 1
 23 3 1 4;
 24
 25 TABLE V(I,J)
 26
 27 1 2
 28 1 2 3
 29 2 4 1
 30 3 1 4;
 31
 32 TABLE P(I, J, K)
 33
 34 1.1 1.2 2.1 2.2
 35 1 1 3 5 7
 36 2 2 4 6 8
 37 3 1 2 3 4 ;
 38
 39 TABLE Q(M, N)
 40
 41 1 2 3
 42 1 1 5 10
 43 2 10 5 1;
 44
 45 ***************************
 46 ** AI.1.1 SUM OF AN ITEM **
 47 ***************************
 48
 49 PARAMETER
 50 SUM1 SUM OF AN ITEM;
 51 SUM1 = SUM(I, X(I));
 52 DISPLAY SUM1;

Appendix II-13

 53
 54 **************************
 55 ** AI.1.2 MULTIPLE SUMS **
Table II. 1 (continued)

 56 **************************
 57
 58 PARAMETER
 59 SUM2 MULTIPLE SUMS;
 60 SUM2 = SUM((I,J), Y(I,J));
 61 DISPLAY SUM2;
 62
 63 *****************************
 64 ** AI.1.3 SUM OF TWO ITEMS **
 65 *****************************
 66
 67 PARAMETERS
 68 SUM3A SUM OF TWO ITEMS-1
 69 SUM3B SUM OF TWO ITEMS-1
 70 A(I) SUM OF TWO ITEMS-2
 71 SUM4A SUM OF TWO ITEMS-3
 72 SUM4B SUM OF TWO ITEMS-3;
 73 SUM3A = SUM(I, X(I)+SUM(J, Y(I, J)));
 74 SUM3B = SUM(I, X(I)) + SUM ((I,J), Y(I,J));
 75 A(I) = X(I) + SUM(J, Y(I,J));
 76 SUM4A = SUM(I, X(I)+Z(I));
 77 SUM4B = SUM(I, X(I)) + SUM(I, Z(I));
 78 DISPLAY SUM3A, SUM3B, A, SUM4A, SUM4B;
 79
 80 **********************************
 81 ** AI.2.1 FOR A SCALER EQUATION **
 82 **********************************
 83
 84 PARAMETERS
 85 B1 SUM FOR A SCALER EQUATION-1;
 86 B1 = SUM((I,J,K), P(I,J,K)) + SUM((M,N), Q(M,N));
 87 DISPLAY B1;
 88
 89 * $ONTEXT
 90 * THE FOLLOWING SUMMATION NOTATIONS ARE INCORRECT
 91 * IF YOU TURN THESE COMMANDS ON, YOU WILL ENCOUNTER
 92 * ERROR MESSAGES
 93 * PARAMETERS
 94 * B2 SUM FOR A SCALER EQUATION-2
 95 * B3 SUM FOR A SCALER EQUATION-3;
 96 * B2 = P(I,J,K) + Q(M,N);
 97 * B3 = SUM((I,J), P(I,J,K)) + SUM((M,N), Q(M,N));
 98 * DISPLAY B2, B3;
 99 * $OFFTEXT
 100

Appendix II-14

 101 ***************************************
 102 ** A.I.2.2 FOR A FAMILY OF EQUATIONS **
 103 ***************************************
 104
 105 VARIABLES C(I), D(I,J), E1(I,J), F(J);
 106 EQUATIONS
 107 EQC(I) EQUATION C
 108 EQD(I,J) EQUATION D
 109 EQE1(I,J) EQUATION E1;
 110 EQC(I).. C(I) =E= 2;
 111 EQD(I,J).. D(I,J) =E= 2;
 112 EQE1(I,J).. E1(I,J) =E= F(J);
 113
 114 * $ONTEXT
 115 * THE FOLLOWING EXPRESSION IS INCORRECT
 116 * ERROR MESSAGES WILL BE ENCOUNTERED
 117 * VARIABLES E2(I,J);
 118 * EQUATION
 119 * EQE2 EQUATION E2;
 120 * EQE2.. E2(I,J) =E= 2;
 121 * $OFFTEXT
 122
 123 VARIABLES G1(I), H1(I,J);
 124 EQUATIONS
 125 EQG1(I) EQUATION G1
 126 EQH1(I,J) EQUATION H1;
 127 EQG1(I).. G1(I) =E= SUM((J,K), P(I,J,K));
 128 EQH1(I,J).. H1(I,J) =E= SUM(K, P(I,J,K));
 129
 130 * $ONTEXT
 131 * THE FOLLOWING EXPRESSIONS ARE INCORRECT
 132 * ERROR MESSAGES WILL BE ENCOUNTERED
 133 * VARIABLES G2(I), H2(I);
 134 * EQUATIONS
 135 * EQG2(I) EQUATION G2
 136 * EQH2(I) EQUATION H2;
 137 * EQG2(I).. G2(I) =E= P(I,J,K);
 138 * EQH2(I).. H2(I) =E= SUM(K, P(I,J,K))
 139 * $OFFTEXT
 140
 141 VARIABLES L1(I), U(I,M), R(I,J,K,M), S(I,J,M);
 142 EQUATIONS
 143 EQL1(I) EQUATION L1
 144 EQN(I,M) EQUATION N;
 145 EQL1(I).. L1(I) =E= SUM((J,K), P(I,J,K));
 146 EQN(I,M).. U(I,M) =E= SUM((J,K),R(I,J,K,M)) +
SUM(J, S(I,J,M));
 147
 148 * $ONTEXT
 149 * THE FOLLOWING EXPRESSIONS ARE INCORRECT

Appendix II-15

 150 * ERROR MESSAGES WILL BE ENCOUNTERED
 151 * VARIABLES L2;
 152 * EQUATIONS
 153 * EQL2(I) EQUATION L2;
 154 * EQL2(I).. L2 =E= P(I,J,K);
 155 * OFFTEXT
 156
 157 VARIABLE O(I,M);
 158 EQUATION
 159 EQO(I,M) EQUATION O;
 160 EQO(I,M).. 2 + SUM((J,K), P(I,J,K)) + SUM(J,
S(I,J,M)) =E= O(I,M);
 161
 162
 163 * $ONTEXT
 164 * THE FOLLOWING EXPRESSION IS INCORRECT
 165 * GAMS ERROR MESSAGES WILL BE ENCOUNTERED
 166 * VARIABLE W(I);
 167 * EQUATION
 168 * EQW(I) EQUATION W;
 169 * EQW(I).. W(I) =E= SUM((I,J,K), P(I,J,K));
 170 * $OFFTEXT
 171
 172 ***************************************
 173 ** AI.4 DEFINING AND USING VARIABLES **
 174 ***************************************
 175
 176 VARIABLES
 177 OBJ1 OBJECTIVE FUNCTION VALUE
 178 T(I,J,K) DECISION VARIABLE;
 179 EQUATIONS
 180 OBJFUNC1 OBJECTIVE FUNCTION
 181 CONST(K) CONSTRAINT;
 182 OBJFUNC1.. OBJ1 =E= SUM((I,J,K), T(I,J,K));
 183 CONST(K).. SUM((I,J), T(I,J,K)) =E= 3;
 184 MODEL EXAMPLE1 /ALL/;
 185 SOLVE EXAMPLE1 USING LP MAXIMIZING OBJ1;
 186 DISPLAY T.L;
 187
 188 * $ONTEXT
 189 * THE FOLLOWING COMMANDS ARE INCORRECT
 190 * THEY WILL RESULT IN ERROR MESSAGES
 191 * VARIABLES
 192 * OBJ2 OBJECTIVE FUNCTION VALUE
 193 * TT(I,J,K) DECISION VARAIBLE;
 194 * POSITIVE VARIABLE TT;
 195 * EQUATIONS
 196 * OBJFUNC2 OBJECTIVE FUNCTION
 197 * CONSTT(K) CONSTRAINT;
 198 * OBJFUNC2.. OBJ2 =E= SUM((I,J), TT(I,J));

Appendix II-16

 199 * CONSTT(K).. SUM((I,J), TT(I,J,K)) =E= 3;
 200 * MODEL EXAMPLE2 /ALL/;
 201 * SOLVE EXAMPLE2 USING LP MAXIMIZING OBJ2;
 202 * DISPLAY TT.L;
 203 * $OFFTEXT
 204
 205 **********************************
 206 ** AI.6 CAUTIONS AND EXTENSIONS **
 207 **********************************
 208
 209 PARAMETER
 210 SUM5A CAUTIONS AND EXTENSIONS-1;
 211 SUM5A = SUM(J, X("2"));
 212 DISPLAY SUM5A;
 213
 214 PARAMETER
 215 PRODUCT6 CAUTIONS AND EXTENSIONS-2;
 216 PRODUCT6 = PROD(I, X(I));
 217 DISPLAY PRODUCT6;
 218
 219 PARAMETERS
 220 SUM7A CAUTIONS AND EXTENSIONS-3
 221 SUM7B CAUTIONS AND EXTENSIONS-3
 222 SUM8A CAUTIONS AND EXTENSIONS-4
 223 SUM8B CAUTIONS AND EXTENSIONS-4
 224 SUM8C CAUTIONS AND EXTENSIONS-4
 225 SUM9A CAUTIONS AND EXTENSIONS-5
 226 SUM9B CAUTIONS AND EXTENSIONS-5
 227 SUM10A CAUTIONS AND EXTENSIONS-6
 228 SUM10B CAUTIONS AND EXTENSIONS-6;
 229 SUM7A = SUM(I, 5*X(I));
 230 SUM7B = 5*SUM(I, X(I));
 231 SUM8A = SUM(I, 5*10);
 232 SUM8B = 5*SUM(I, 10);
 233 SUM8C = 5*3*10;
 234 SUM9A = SUM((I,J), V(I,J)+Y(I,J));
 235 SUM9B = SUM((I,J), V(I,J)) + SUM((I,J), Y(I,J));
 236 SUM10A = SUM((I,J), X(I)+Y(I,J));
 237 SUM10B = 2*SUM(I, X(I)) + SUM((I,J), Y(I,J));
 238 DISPLAY SUM7A, SUM7B, SUM8A, SUM8B, SUM8C,
 239 SUM9A, SUM9B, SUM10A, SUM10B;

Appendix VI-1

Appendix III GAMSMAP Usage

GAMSMAP is a program which creates a set of output identifying where in a program that
certain items appear and where they are used. Examples of the output appear in chapter 11.

GAMSMAP is used via a two step process. First the base model must be run with the run time
parameter rf=list invoked. Second GAMSMAP is run. The GAMSMAP output is then present on 4
output files.

File Name Contents
 gamsout Contains a list of parameters that are computed during program

execution and is designed to give one a list of items that are program
outputs, although other things would also be included

 gamsmap.sc0 Lists all files which GAMS executes during program execution. Also
lists items which are defined but not used.

 gamsmap.sc1 Lists all places where actions are undertaken on SETS, PARAMETERS,
EQUATIONS, VARIABLES, and MODELS in the program showing
where items are initially identified or defined(DECLARED,DEFINED),
given values (ASSIGNED), used as indices (CONTROL), or used
(REF). Also gives the items worked on by file in the program.

 gamsmap.sc2. Lists all items given input data. Intended to list data that are input to a
model and where they appear.

In using GAMSMAP the program should not use save or restart files as the RF option only
generates option on the files included in the current run.

Example for GAMSMAP:

Suppose we want to use GAMSMAP to get information on the chapter 5 ASM model example.
To do this we first reconstruct the r.bat save / restart procedure into one composite model. We then
form the file as follows:

 $include allofit.gms
 $include asmmodel.gms
 $include asmsolvf.gms
 $include asmrept.gms

Suppose we call this file ALLFILES.

After that, we execute gams with the command

 gams ALLFILES rf=list

Appendix VI-1

 Then execute GAMSMAP.

 This generates the results in Table 11-3 in the four files.

