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1 Introduction

When wishing to replace the usual expectation-based ob-
jective by some functional measuring risk, at least the fol-
lowing three issues have to be addressed:

e What is an appropriate risk measure for the underlying
practical model ?

e Does this exchange lead to serious changes in struc-
ture and stability ?

e Does the exchange cause serious computational prob-
lems ?

References: Schultz/Tiedemann 02, Schultz 03

Of course, the stochastic programming user wishes that
his choice of a risk measure leads to the answer no on the
last two questions.

We will discuss a subclass of convex risk measures having
this enjoyable property.

Our motivation stems from stochastic programming ap-
plications in electricity portfolio management, i.e., from
solving large scale mixed-integer stochastic programs.



2 Polyhedral risk measures

Let Z denote a linear space of real random variables on
some probability space (§2, F,IP). We assume that Z
contains the constants. A functional p: Z — IR is called
a risk measure if it satisfies the following two conditions
forall z, z € Z:

(i) If z < Z, then p(z) > p(Z) (monotonicity).

(i) For each r € IR we have p(z +71) =p(z) — r
(translation invariance).

A risk measure p is called convex if it satisfies the condition
p(Az + (1 = XN)2) < Ap(2) + (1 = A)p(2)

forall z, Z € Z and A\ € [0, 1].
A convex risk measure is called coherent if it is positively

homogeneous, i.e., p(Az) = Ap(z) for all A > 0 and
z € Z.

References: Artzner/Delbaen/Eber/Heath 99, Follmer/Schied 02



Definition: A risk measure p on Z will be called poly-
hedral if there exist k,l € IN, a,c € R*, qw € R, a
polyhedral set X C IR" and a polyhedral cone Y C IR’
such that

p(z) = nf{{c,z) + E[(q,y)] : {a,2) + (w,y) =2,z € X,y €V}

for each z € Z. Here, IE denotes the expectation on
(Q, F,IP) and (-,-) the scalar product on IR".

The notion polyhedral risk measure is motivated by the
polyhedrality of p(z) as a function of the scenarios of z if
2 is discrete.

Assume that p is a polyhedral risk measure on the space
Z = L1(QF,P), that (w,Y) = IR and {u € IR :
uw — q € Y*} £ (), where Y* is the polar cone of Y.
Then there exist two real numbers u,, £ = 1, 2, such that

plz) = inf {{c,z) + E{maxu(z — (a,7))[}.

In particular, p is a convex risk measure. It is coherent if
X is a cone.



Proposition: Let k,l € IN, a,c € R*, qw € IR, a
polyhedral set X C IR" and a polyhedral cone Y C IR’
be given such that

p(z) = nf {{c,x)+E[(q,y)] : (a,x)+{w,y) =z, v € X,y €Y}

for each z € L1(Q, F, IP).
Let (w,Y)=Rand) #{u e R:uvw—qeY*} C IR_
and a, ¢ and X have the form a = (a,—1), c = (¢, 1) and
X =X x IR, where a, c € RF1 and X C R
Then p is a convex risk measure on L1(Q2, F, IP) if it is
finite.
Furthermore, if p is finite it admits the following dual rep-
resentation
p(z) = sup{ — E[\z] + inf (¢ +a,z): X € Ly(Q2F, IP),
reX
FEMN=1 —(¢g+ \w) € Y}

for each z € L,(2,F,IP) with 1 < p < 400 and
1 1 —1
lyl=1

Proof: by relying on stochastic programming methodology; the Lagrangian dual func-

tion has the form D(\) = inf E inf IE ~FE
ion has the form D(A) = inf {{c + [A]a,w>+y€LII{yEY (g + Aw, y)] [Az]}

P

(Reference: Wets 70).



Example 1: letk=[=1,a=—-1,c=1and X = R.
Then the conditions in the Proposition imply ¥ = IR,
w # 0 and L < 0. We obtain that p has the form

p(z) = E[L2] + inf{(1 + %)x -z € R}.

w
Hence, p is finite iff = = —1iff p(2) = IE[—z].

Example 2: Conditional, Tail or Average Value at Risk
We consider the Average Value at Risk AVaR, defined
by

1 o
AVaR,(z) = a/ VaR,(z)dy
0

1
= inf {r + —IF|max{0, —r — z}|},
inf {7+ Elmax{0, - - 23]}
where VaR,(z) :=inf{r € R: P(z+1r <0) < a}is
the Value at Risk at level o € (0, 1).
AV aR, is polyhedral by setting k =1, 1 =2, a = —1,
c=1¢=(10),w=(-11), X=Rand Y = R’.

The condition —(q+ Aw) € Y™ in the dual representation

is equivalent to A € [0, 1].



3 Multiperiod polyhedral risk measures

While the notion of a polyhedral risk measure is appro-
priate for two-stage stochastic programming models, we
now consider a multiperiod extension in case that instead
of the real random variable z a real stochastic process
z = {2, F1}, with a filtration /, C --- C F, C --- C
Fr = Fis given. It is assumed that z,, 7 =2,...,¢, is
measurable with respect to F;, t =2,...,T.

As natural candidates for such an extension we consider
functionals p on the linear space x’_,L(Q, F;, IP) that
are defined as optimal values of specific multi-stage stochas-
tic programs. Namely, we assume that there are k; € IV,
¢ € R t=1,....T, a4 € R"', w; € R", t =
2,...,T, apolyhedral set Y; C IR*' and polyhedral cones
Y, CR* t=2,...,T, such that

T

p(z) = inf{]E[Z(ct,ytﬂ 1 € Y1,y is Fi-measurable, y; € Y5,
t=1

<a’t7 yt—1> + <wt7 yt> — Ztat - 27 < 7T}



Dynamic programming formulation of p:

p(z) = inf{{ci,y1) + Efva(y1, 2)] : y1 € Y1}
Vi(Yi—1, 2, - -5 2r) = inf{{c, ye) + v (ye, 2, - -2, 27) | F
Yy € Yy, (an, Y1) + (Wi, yi) = 21},

t=T. . . . .2

UT+1(3/T) = 0.

References: Rockafellar/Wets 76, Evstigneev 76

Dual formulation for p:

p(z) = sup{ inf (c1 + IE[Xs]az, 1)

E A2
y1€Y]

A\ € Lﬂ(Q,E,P), =2,... ,T, (CT—I—)\TUJT) c Yivk,
_(Ct + WA + at+1E[>\t+1|-7:tD S Yt*at =T —1,.. '72}

holds whenever z; € L,(Q), F, IP), t =2,...,T, p > 1,
]lj +]% = 1, and the right-hand side is finite.
References: Eisner/Olsen 75, Rockafellar/Wets 76, 78



Definition: (Artzner/Delbaen/Eber/Heath/Ku 02)

A functional p on (a subset of) x/_,L,(2, F, IP) (p > 1)
is called a multiperiod coherent risk measure if it satisfies
the Fatou property and if there exist positive reals 1; > 0,
t=2,...,T, Zthz n; = 1, and a closed convex set A
of nonnegative functions contained in X;_, L, (2, Fy, IP),
with %Jrl% = 1, such that

p(z) = sup{— ZntE[)‘tZt] A e, ZmJE[/\t] = 1}.

=2 t=2

w
Am) = {re xL,Ly(Q, F, IP) : —(cr + ATU—;:) €Y7,

e+ D+ M B F) €Y =2, T — 1}
Tt Tt+1
Proposition:
A multiperiod polyhedral risk measure is multiperiod co-
herent if
( ) Ny = Tl_lv =2,...,T,
(i) A € A(n) mplles)\t>0 P-as.,t=2,...,T, and
(||) A€ /\( ) and inf (c; + E[Ag]ag,y1> = 0 imply

y1€EY]



4 Multistage SP models with minimal risk

We consider a stochastic process {¢!, F;} L, with distribu-
tion P modelling the uncertain future and the multi-stage
stochastic program

I T
Minimize Z Cpzi+IE [Z Z C’it(.ft)xf] (expectation)
i=1

t=2 =1

or, alternatively,

I I
Minimize Z Coai+p ({Z Cit(gt)x’;}%) (risk measure)
i=1 i=1

such that

z' is F; — measurable ;2! € Xy, t=1,...,T,
A} + Aige-1(§)2" > g€t =2, Ti=1,....1,
Z;',:l BZt(gi)xz@f > dt(gt)7t - 17 <o 7T'

Here, o' = (2f,... 2%, t = 1,...,T, 7 = {0,Q},
Fr=F, Air;, T =t —1,t, By, git and d; are matrices
and vectors possibly depending on &', ¢t =1,...,T, and
X;; subsets of Euclidean spaces.
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Incorporating the multiperiod risk measure into the original
program leads to a multistage model exhibiting the same
structure and having (x,y) as decision.

T

I
1(rnir)1 Z OleCZl + E[Z<Cta yt>]
Y ia

t=1

such that

11 € Y1,y is nonanticipative, y; € Y3,

I
<at7 yt—1> =+ <wt7 yt> — Z CZ (gt)vat — 27 s 7T7
i=1
z' is nonanticipative , 2! € X, t =2,...,T,

Ait,tfﬁf + Ait,t—l(gt)xg_l Z git(gt)at — 27 s 7T7i - 17 R ]7

1
> Bul&)al > dy(¢h),t=1,...T.
1=1

The stability behaviour and the metrics 1. as well as the
decomposition structure (e.g. for scenario, node and geo-
graphic decomposition) do (almost) not change !
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