
Polyhedral risk measures

in stochastic programming

A. Eichhorn and W. Römisch

Humboldt-University Berlin
Institute of Mathematics
10099 Berlin, Germany

www.mathematik.hu-berlin.de/~romisch

GAMS Workshop, Heidelberg, Sept. 1-3, 2003

1



1 Introduction

When wishing to replace the usual expectation-based ob-

jective by some functional measuring risk, at least the fol-

lowing three issues have to be addressed:

• What is an appropriate risk measure for the underlying

practical model ?

• Does this exchange lead to serious changes in struc-

ture and stability ?

• Does the exchange cause serious computational prob-

lems ?

References: Schultz/Tiedemann 02, Schultz 03

Of course, the stochastic programming user wishes that

his choice of a risk measure leads to the answer no on the

last two questions.

We will discuss a subclass of convex risk measures having

this enjoyable property.

Our motivation stems from stochastic programming ap-

plications in electricity portfolio management, i.e., from

solving large scale mixed-integer stochastic programs.
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2 Polyhedral risk measures

Let Z denote a linear space of real random variables on

some probability space (Ω,F , IP ). We assume that Z
contains the constants. A functional ρ : Z → IR is called

a risk measure if it satisfies the following two conditions

for all z, z̃ ∈ Z :

(i) If z ≤ z̃, then ρ(z) ≥ ρ(z̃) (monotonicity).

(ii) For each r ∈ IR we have ρ(z + r) = ρ(z)− r
(translation invariance).

A risk measure ρ is called convex if it satisfies the condition

ρ(λz + (1− λ)z̃) ≤ λρ(z) + (1− λ)ρ(z̃)

for all z, z̃ ∈ Z and λ ∈ [0, 1].

A convex risk measure is called coherent if it is positively

homogeneous, i.e., ρ(λz) = λρ(z) for all λ ≥ 0 and

z ∈ Z .

References: Artzner/Delbaen/Eber/Heath 99, Föllmer/Schied 02
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Definition: A risk measure ρ on Z will be called poly-

hedral if there exist k, l ∈ IN , a, c ∈ IRk, q, w ∈ IRl, a

polyhedral set X ⊆ IRk and a polyhedral cone Y ⊆ IRl

such that

ρ(z) = inf {〈c, x〉 + IE[〈q, y〉] : 〈a, x〉 + 〈w, y〉 = z, x ∈ X, y ∈ Y }

for each z ∈ Z . Here, IE denotes the expectation on

(Ω,F , IP ) and 〈·, ·〉 the scalar product on IRk.

The notion polyhedral risk measure is motivated by the

polyhedrality of ρ(z) as a function of the scenarios of z if

z is discrete.

Assume that ρ is a polyhedral risk measure on the space

Z = L1(Ω,F , IP ), that 〈w, Y 〉 = IR and {u ∈ IR :

uw − q ∈ Y ∗} 6= ∅, where Y ∗ is the polar cone of Y .

Then there exist two real numbers u`, ` = 1, 2, such that

ρ(z) = inf
x∈X
{〈c, x〉 + IE [max

`=1,2
u`(z − 〈a, x〉)]}.

In particular, ρ is a convex risk measure. It is coherent if

X is a cone.
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Proposition: Let k, l ∈ IN , a, c ∈ IRk, q, w ∈ IRl, a

polyhedral set X ⊆ IRk and a polyhedral cone Y ⊆ IRl

be given such that

ρ(z) = inf {〈c, x〉+IE[〈q, y〉] : 〈a, x〉+〈w, y〉 = z, x ∈ X, y ∈ Y }

for each z ∈ L1(Ω,F , IP ).

Let 〈w, Y 〉 = IR and ∅ 6= {u ∈ IR : uw−q ∈ Y ∗} ⊂ IR−
and a, c and X have the form a = (â,−1), c = (ĉ, 1) and

X = X̂ × IR, where â, ĉ ∈ IRk−1 and X̂ ⊆ IRk−1.

Then ρ is a convex risk measure on L1(Ω,F , IP ) if it is

finite.

Furthermore, if ρ is finite it admits the following dual rep-

resentation

ρ(z) = sup { − IE[λz] + inf
x̂∈X̂
〈ĉ + â, x̂〉 : λ ∈ Lp′(Ω,F , IP ),

IE[λ] = 1, −(q + λw) ∈ Y ∗}

for each z ∈ Lp(Ω,F , IP ) with 1 < p < +∞ and
1
p + 1

p′ = 1.

Proof: by relying on stochastic programming methodology; the Lagrangian dual func-

tion has the form D(λ) = inf
x∈X
{〈c + IE[λ]a, x〉 + inf

y∈Lp,y∈Y
IE[〈q + λw, y〉] − IE[λz]}

(Reference: Wets 70).
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Example 1: Let k = l = 1, a = −1, c = 1 and X = IR.

Then the conditions in the Proposition imply Y = IR,

w 6= 0 and q
w < 0. We obtain that ρ has the form

ρ(z) = IE[
q

w
z] + inf{(1 +

q

w
)x : x ∈ IR}.

Hence, ρ is finite iff q
w = −1 iff ρ(z) = IE[−z].

Example 2: Conditional, Tail or Average Value at Risk

We consider the Average Value at Risk AV aRα defined

by

AV aRα(z) :=
1

α

∫ α

0

V aRγ(z)dγ

= inf
r∈IR
{r +

1

α
IE[max{0,−r − z}]},

where V aRα(z) := inf{r ∈ IR : IP (z + r < 0) ≤ α} is

the Value at Risk at level α ∈ (0, 1).

AV aRα is polyhedral by setting k = 1, l = 2, a = −1,

c = 1, q = ( 1
α, 0), w = (−1, 1), X = IR and Y = IR2

+.

The condition −(q+λw) ∈ Y ∗ in the dual representation

is equivalent to λ ∈ [0, 1
α].
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3 Multiperiod polyhedral risk measures

While the notion of a polyhedral risk measure is appro-

priate for two-stage stochastic programming models, we

now consider a multiperiod extension in case that instead

of the real random variable z a real stochastic process

z = {zt,Ft}Tt=2 with a filtration F2 ⊆ · · · ⊆ Ft ⊆ · · · ⊆
FT = F is given. It is assumed that zτ , τ = 2, . . . , t, is

measurable with respect to Ft, t = 2, . . . , T .

As natural candidates for such an extension we consider

functionals ρ on the linear space ×Tt=2L1(Ω,Ft, IP ) that

are defined as optimal values of specific multi-stage stochas-

tic programs. Namely, we assume that there are kt ∈ IN ,

ct ∈ IRkt, t = 1, . . . , T , at ∈ IRkt−1, wt ∈ IRkt, t =

2, . . . , T , a polyhedral set Y1 ⊆ IRk1 and polyhedral cones

Yt ⊆ IRkt, t = 2, . . . , T , such that

ρ(z) = inf{IE[

T∑
t=1

〈ct, yt〉] : y1 ∈ Y1, yt is Ft-measurable, yt ∈ Yt,

〈at, yt−1〉 + 〈wt, yt〉 = zt, t = 2, . . . , T}
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Dynamic programming formulation of ρ:

ρ(z) = inf{〈c1, y1〉 + IE[v2(y1, z)] : y1 ∈ Y1}
vt(yt−1, zt, . . . , zT ) := inf{〈ct, yt〉 + IE[vt+1(yt, zt+1, . . . , zT )|Ft] :

yt ∈ Yt, 〈at, yt−1〉 + 〈wt, yt〉 = zt},
t = T, . . . , 2,

vT+1(yT ) := 0 .

References: Rockafellar/Wets 76, Evstigneev 76

Dual formulation for ρ:

ρ(z) = sup{ inf
y1∈Y1
〈c1 + IE[λ2]a2, y1〉 − IE

[
T∑
t=2

λtzt

]
:

λt ∈ Lp′(Ω,Ft, IP ), t = 2, . . . , T,−(cT + λTwT ) ∈ Y ∗T ,
−(ct + wtλt + at+1IE[λt+1|Ft]) ∈ Y ∗t , t = T − 1, . . . , 2}

holds whenever zt ∈ Lp(Ω,Ft, IP ), t = 2, . . . , T , p > 1,
1
p + 1

p′ = 1, and the right-hand side is finite.

References: Eisner/Olsen 75, Rockafellar/Wets 76, 78
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Definition: (Artzner/Delbaen/Eber/Heath/Ku 02)

A functional ρ on (a subset of) ×Tt=2Lp(Ω,Ft, IP ) (p > 1)

is called a multiperiod coherent risk measure if it satisfies

the Fatou property and if there exist positive reals ηt > 0,

t = 2, . . . , T ,
∑T

t=2 ηt = 1, and a closed convex set Λ

of nonnegative functions contained in ×Tt=2Lp′(Ω,Ft, IP ),

with 1
p + 1

p′ = 1, such that

ρ(z) = sup{−
T∑
t=2

ηtIE[λtzt] : λ ∈ Λ,

T∑
t=2

ηtIE[λt] = 1}.

Λ(η) := {λ ∈ ×Tt=2Lp′(Ω,Ft, IP ) : −(cT + λT
wT
ηT

) ∈ Y ∗T ,

−(ct +
wt
ηt
λt +

at+1

ηt+1
IE[λt+1|Ft]) ∈ Y ∗t , t = 2, . . . , T − 1}

Proposition:
A multiperiod polyhedral risk measure is multiperiod co-

herent if

(i) ηt = 1
T−1, t = 2, . . . , T ,

(ii) λ ∈ Λ(η) implies λt ≥ 0, IP -a.s., t = 2, . . . , T , and

(iii) λ ∈ Λ(η) and inf
y1∈Y1
〈c1 + IE[λ2]a2, y1〉 = 0 imply

IE[λt] = 1, t = 2, . . . , T .
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4 Multistage SP models with minimal risk

We consider a stochastic process {ξt,Ft}Tt=2 with distribu-

tion P modelling the uncertain future and the multi-stage

stochastic program

Minimize
I∑
i=1

Ci1x
1
i+IE

[
T∑
t=2

I∑
i=1

Cit(ξ
t)xti

]
(expectation)

or, alternatively,

Minimize
I∑
i=1

Ci1x
1
i+ρ

(
{

I∑
i=1

Cit(ξ
t)xti}Tt=2

)
(risk measure)

such that

xt is Ft −measurable , xti ∈ Xit, t = 1, . . . , T,

Ait,tx
t
i + Ait,t−1(ξt)xt−1

i ≥ git(ξ
t), t = 2, . . . , T, i = 1, . . . , I,∑I

i=1Bit(ξ
t)xti ≥ dt(ξ

t), t = 1, . . . , T.

Here, xt = (xt1, . . . , x
t
I), t = 1, . . . , T , F1 = {∅,Ω},

FT = F , Ait,τ , τ = t − 1, t, Bit, git and dt are matrices

and vectors possibly depending on ξt, t = 1, . . . , T , and

Xit subsets of Euclidean spaces.
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Incorporating the multiperiod risk measure into the original

program leads to a multistage model exhibiting the same

structure and having (x, y) as decision.

min
(x,y)

I∑
i=1

Ci1x
1
i + IE[

T∑
t=1

〈ct, yt〉]

such that

y1 ∈ Y1, yt is nonanticipative, yt ∈ Yt,

〈at, yt−1〉 + 〈wt, yt〉 =

I∑
i=1

Cit(ξ
t)xti, t = 2, . . . , T,

xt is nonanticipative , xti ∈ Xit, t = 2, . . . , T,

Ait,tx
t
i + Ait,t−1(ξt)xt−1

i ≥ git(ξ
t), t = 2, . . . , T, i = 1, . . . , I,

I∑
i=1

Bit(ξ
t)xti ≥ dt(ξ

t), t = 1, . . . , T.

The stability behaviour and the metrics µc as well as the

decomposition structure (e.g. for scenario, node and geo-

graphic decomposition) do (almost) not change !
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